Pareto v říši vědy

Původně ekonomicky motivovaná Paretova poučka, známá též jako pravidlo 80/20, v zobecněné formě tvrdí, že na vytvoření 80% výstupu obvykle stačí 20% vstupu. Toto jednoduché schéma našlo svou analogii i mimo řadu jiných, neekonomických oblastí. Ačkoliv funguje často docela dobře, je dobré s ním zacházet obezřetně. Paretovo pravidlo není možné nebo rozumné slepě aplikovat na všechny situace. Někdy je dosažení posledních 20% i za cenu vynaložení násobku dosavadních prostředků (resp. času) žádoucí, např. při získávání nějaké dovednosti nebo znalosti, nebo u striktně vymezených projektů, které mají smysl pouze jako celek.

Dunnig-Krugerův efekt aplikovaný na učení.

S prvním výše zmíněným příkladem mimochodem souvisí i psychologický jev, kdy pocit „mírně poučených“ v nějakém oboru že tématu rozumí, bývá typicky silnější, než u skutečných expertů daného oboru (tzv. Dunning-Krugerův efekt). S druhým zmíněným příkladem pak souvisí všechny situace, kde se projevuje nějaký synergický efekt, kdy vynechání nějaké části vede k zásadní degradaci výsledku. „Paretova bábovka“ upečená dle klasického receptu s vynecháním jedné ingredience by vám asi moc nechutnala a pochybuji, že byste se ztotožnili s hodnocením, že použitím ingrediencí za 20% celkové ceny (např. mouka + voda) může vzniknout „z 80% perfektní bábovka“.

Stejně jak je zřejmé, že příliš nezáleží na přesných číslech (80/20), spíše jde o empiricky odhalený důsledek toho, že jednotlivé činnosti, ze kterých se nějaký úkol skládá, lze seřadit podle nákladů (ať už finančních, časových, fyzických, duševních, …) a v takovém nerovnoměrném rozdělení pak logicky existuje relativně úzká oblast, jejíž integrál je vyšší, než integrál chvostu tohoto rozdělení. Jednoduše – a obecně bez čísel – řečeno: menší část příčin stojí za větší částí důsledků.

Matematická podstata Paretova principu.

Také bývá častou chybou založit rozhodování o tom, co spadá do horního pásma (ať už to je přesně 20%, nebo více či méně), na špatné nebo neúplné sadě parametrů. Nemůžete se v běžném byznysu například věnovat jen horní pětině zákazníků na základě útraty, kterou jsou u vás ochotni zanechat, protože ve zbylých 80% může být někdo, jehož názor má vliv na rozhodování řady dalších lidí, mezi nimiž můžou být i nějací z vašich prominentních zákazníků. Jinými slovy – do rozhodování vstupují i jiné, než čistě finančně kvantitativní ukazatele.

Problém je, že ne vždy jsou tyto ukazatele známy. Což mě přivedlo k malému zamyšlení, do jaké míry bych mohl aplikovat Paretovo pravidlo na vědeckou činnost. Třeba bych pak přišel na to, jak zefektivnit svou práci (vynechání ranního kafe v tomto směru moc potenciálu neskrývá :).

Budeme-li vycházet z toho, jakým způsobem je v dnešní době typicky věda z vnějšího hlediska posuzována, tak jako jednotku výstupu vědecké práce lze použít publikaci, jako kvantifikátor pak celkem solidně poslouží ohlas ve smyslu počtu citací na daný článek. Za předpokladu zhruba stejného času potřebného na vznik každé jednotky a zanedbání časového faktoru (počet citací samozřejmě monotónně narůstá v čase, takže starší články v průměru stojí výše, ale pokud se průběžně v čase střídají produkce méně a více úspěšných výstupů, pak lze toto zanedbání učinit), pak můžu ze svého současného seznamu publikací vydedukovat, že horních 20% článků vede k zhruba 62% všech citací a na pokrytí 80% „výkonu“ jsem potřeboval 37% článků. Jak už jsem psal výše, na přesných číslech nezáleží, takže bychom v tomto konkrétním případě interpretovali Paretovu poučku jako 62/20 nebo 80/37 a mohli bychom s tím být hotovi. Navíc u jiných autorů to může být jinak a v mnoha případech [1, 2, 3, 4] je na větších vzorcích relace 80/20 poměrně dobře splněna. Jenže hlavní problém je v tom, že pokud má být takové pravidlo použito pro plánování práce, potažmo zvýšení její efektivity, musel bych mít v ruce mechanismus, pomocí kterého předem posoudím, jak si bude který článek nebo (když půjdeme více k podstatě) výzkumné téma stát z hlediska budoucího výsledku. Pokud bych něco takového měl, asi bych tomu dál těžko mohl říkat výzkum.

Zdá se tedy, že Paretovo pravidlo může být velmi užitečné, tím spíše když jeho aplikaci předchází ujasnění si toho, kolik nás která činnost stojí úsilí nebo času a kolik nám ve výsledku přináší. Zároveň se ukazuje jedno z jeho principiálních omezení, tj. že je možné ho uplatňovat spíše na činnosti rutinní povahy, ale nikoliv na tvůrčí činnosti (nikoliv nutně pouze vědecké), kde je možnost predikovat výsledek velmi omezená.

Proč světem hýbou lidé

Prehistoričtí lidé před nějakými 70 tisíci lety byli naprosto nedůležitými zvířaty. Jejich vliv na chod světa byl velmi malý, menší než vliv medúz, datlů, nebo čmeláků.

A dnes? Lidé jsou jasnými vládci planety. Jak jsme se dostali až sem? Co bylo naším tajemstvím úspěchu, jenž z nedůležitých opic, které se víceméně staraly jen o to své někde v zastrčeném koutě Afriky, učinila pány světa?

Často se v podobných srovnáních soustředíme na individuální rozdíly mezi námi a ostatními zvířaty. Rádi bychom věřili, že existuje něco, co činí naše tělo nebo náš mozek natolik mimořádnými, že se nám třeba pes, prase, ani šimpanz nedokáží vyrovnat. Pravdou však je, že ve srovnání jeden na jednoho se od šimpanzů příliš nelišíme. A pokud byste mě a nějakého náhodného šimpanze vysadili na pustém ostrově a sledovali, kdo snáze přežije, rozhodně bych si na sebe nevsadil.

Kolektivní chování mravenců je obdivuhodné. Ale zároveň příliš rigidní.

Skutečný a určující rozdíl mezi námi a ostatními zvířaty vyjde najevo až na skupinové úrovni. Jsme vládci světa proto, že jsme jedinými živočichy, kteří dokáží pružně spolupracovat na opravdu velkém měřítku. Rozsáhlá společenství mravenců nebo včel sice také disponují rozsáhlou schopností spolupráce, ale činí tak v rámci poměrně pevných pravidel. Pokud se ve včelíně vyskytne neznámá hrozba nebo naopak přijde nečekaná příležitost, včely nedokáží přebudovat svůj striktně definovaný sociální systém přes noc, aby se s novými výzvami účinně vypořádaly. Nemůžou například svrhnout královnu, aby založili včelí republiku. Vlci nebo šimapanzi jsou na tom s flexibilitou spolupráce sice daleko lépe než třeba mravenci, ale jsou jí schopni pouze mezi malým množstvím jedinců, kteří se důvěrně znají – jejich ochota kooperovat je založena na osobní známosti. Když jsem šimpanz a rozhoduji se ke spolupráci, musím tě znát a kladu si tedy otázky: Jaký jsi šimpanz? Jsi hodný? Jsi zlý? Jak s tebou můžu spolupracovat, když o tobě nic nevím?

Pouze druh Homo sapiens si osvojil schopnost spolupráce s nesčetným množstvím naprosto cizích příslušníků svého druhu. Ve srovnání jeden na jednoho, možná i deset proti deseti, si šimpanzi povedou často lépe než my. Ale postavte proti sobě tisíc šimapanzů a tisíc průměrných lidí a výsledkem bude drtivé vítězství druhu Sapiens, a to z jediného prostého důvodu – umí lépe spolupracovat. Zkuste poslat 100 tisíc šimpanzů na Wall Street nebo na fotbalový stadión a výsledkem bude chaos. Udělejte to s lidmi a výsledkem budou obchodní sítě a sportovní soutěže.

Spolupráce samozřejmě neplodí vždy jen dobro. Největší hrůzy, které lidstvo kdy spáchalo, byly také produktem hromadné spolupráce. Vězení, vyhlazovací a koncentrační tábory nejsou nic jiného než výsledky lidské kooperace. Šimpanzi ničím z toho nedisponují.

Jak došlo k tomu, že lidé získali schopnost hromadné a pružné spolupráce, ať už jde o hry, obchod nebo koncentráky? Odpovědí je naše představivost. Dokážeme se zapojit do spolupráce s velkým množstvím neznámých lidí,  protože umíme vytvořit smyšlené příběhy, šířit je a přesvědčit miliony dalších, aby jim věřili. Pokud všichni věří ve stejnou ideu, dodržují stejná pravidla a efektivně tak spolupracují.

A toho jsou schopni pouze lidé. Nikdy se vám nepodaří přesvědčit šimpanze, aby vám dal banán za slib, že až jednou umře, přijde do šimpanzího Nebe, kde dostane za svou dobrotu tolik banánů, kolik si jen vzpomene. Na tohle vám žádný šimpanz neskočí. Na něco takového přesvědčíte pouze člověka. Proto kralujeme světu, zatímco některé opice bloumají zamčené v klecích zoologických zahrad a výzkumných laboratoří.

Princip ideologicky podmíněné kooperativnosti se netýká samozřejmě jen náboženských společenství. Lidé stavěli katedrály nebo se vydávali na křížové výpravy ve společné víře v Boha a Nebe. Ale totéž funguje stejně dobře i pro ostatní typy masových spoluprací. Například právní systémy – většina těch současných je založena na hluboké víře v jistá základní lidská práva. Ale lidská práva jako taková jsou čirou fikcí, podobně jako koncept Boha nebo nebeské věčnosti. Ve skutečnosti lidé žádná apriorní práva nemají, stejně tako jako šimpanzi, vlci nebo včely. Rozeberte člověka na součástky a žádná práva mezi nimi nenajdete. Jediným místem, kde lidská práva existují, je v našich příbězích, které jsme si vymysleli a předali jeden druhému. Ve smyšlenkách sice atraktivních, ale pořád jen pouhých smyšlenkách.

Tentýž mechanismus se uplatňuje i v politice. Stejně jako božstva a lidská práva jsou pouhou fikcí i národy. Hora, to je něco skutečného. Vidíte ji, můžete se jí dotknout, cítit ji. Ale Spojené státy nebo Izrael nejsou žádnou objektivní fyzickou realitou. Nemůžete je v doslovném smyslu vidět, dotknout se jich, cítit je. Jsou jen součástí příběhů, které si lidé vytvořili a časem se s nimi bytostně spjali.

Bankovka – jedna z největších fikcí v dějinách lidstva.

Podobně můžeme pokračovat u ekonomických systémů. Vezměme si například běžnou dolarovou bankovku – sama o sobě nemá prakticky žádnou hodnotu. Nemůžete se jí zasytit, napít, nemůžete si ji obléct. Ale dostaňte se do role nějakého velkého báchorkáře typu šéfa centrální banky a přesvědčte lidi, že ten zelený kousek papírku má hodnotu pěti banánů. Ve chvíli, kdy tuto smyšlenku přijmou za své milióny lidí, tu hodnotu ve skutečnosti opravdu začne mít. Můžu pak zajít do obchodu, podat ten jinak bezcenný papírek naprosto cizímu člověku a dostat za to od něj pět skutečných banánů. A teď to samé zkuste se šimpanzem…

Peníze jsou pravděpodobně historicky nejúspěšnější fikcí vymyšlenou člověkem. Ne všichni věří v nějakého boha, v lidská práva nebo ve Spojené státy. Ale zato prakticky každý věří v sílu peněz a potažmo v hodnotu dolarové bankovky. Dokonce i Usama bin Ladin. Sice nenáviděl americké vyznání, politiku a kulturu, ale dolary, ty měl moc rád. Proti této konkrétní báchorce neměl sebemenších námitek.

Abychom to shrnuli: zatímco všechna ostatní zvířata žijí v objektivně existujícím světě řek, stromů a lvů, my lidé dlíme ve světě dvojím. Ano, i v tom našem jsou řeky, stromy a lvi, ale navíc k této objektivní realitě jsme si stvořili druhou vrstvu reality stojící na víře a zahrnující smyšlené entity jako jsou Evropská unie, Bůh, dolar nebo lidská práva.

Postupem času tyto fiktivní prvky našich životů získávaly větší a větší vliv, až se staly nejmocnějšími silami v našem světě. Jsme nyní v situaci, kdy otázka přežití stromů, řek a zvířat závisí na přáních a rozhodnutích smyšlených entit typu Spojených států nebo Světové banky – entit, které přitom existují pouze v naší představivosti.

 

Přeloženo z článku profesora historie Yuvala Noaha Harariho, autora knihy Sapiens: A Brief History of Mankind.

Tvůj názor? Ne, prostě kecáš!

Během posledních několika let jsem měl se svými studenty řadu rozhovorů, kdy jsem se jim snažil vysvětlit, že prosté prohlášení „to je můj názor“ nevylučuje, že dané tvrzení není naprosto špatně. Stále mi nejde na rozum, že někteří mají pocit, že tato čtyři slova jim nějakým způsobem dávají naprostou volnost žvanit libovolné nesmysly. A docela mě děsí, že někteří studenti si myslí, že vzdělání, které zpochybňuje jejich představy, představuje útok na jejich víru.                 
                                                        – Mick Cullen

Každý, kdo se občas pouští do debat s jinými lidmi, bez ohledu na téma, nezůstane ušetřen slovu „názor“, nebo v horším případě „víra“.   Tato slova přitom často slouží jako obranný štít kdejakého nedomyšleného nebo pochybného tvrzení, které je pak často nekriticky šířeno vodami sociálních sítí.

V běžném pojetí je názor něco, co nemůže být z principu špatně. Velmi striktně vzato to tak možná i je, ale dříve, než se v nějaké argumentaci pokusíte schovat za univerzální Štít Názoru, zkuste si položit následující otázky:

  1. Jde vlastně o názor?
  2. Pokud ano, jak kvalifikovaný je a proč ho zastávám?

Pokud jde o první bod, není těžké si na něj odpovědět: názor je preference něčeho nebo úsudek o něčem. „Moje oblíbená barva je černá. Podle mě špenát chutná hnusně. Ordinace je nejlepší televizní seriál.“ To vše lze považovat za názory. Mohu je zastávat pouze já nebo mohou být sdíleny množstvím dalších lidí či dokonce obecně přijímány. Většinou mají jedno společné – nelze je v principu nijak ověřit vyjma prosté skutečnosti, že jim já sám věřím.

Na názorech takového typu není absolutně nic špatného, ať už by s nimi kdokoliv souhlasil nebo nikoliv. Problém nastává v případech, kdy je „názor“ ve skutečnosti fakticky chybným úsudkem. Pokud budete tvrdit, že vakcíny způsobují autismus, vyjadřujete něco, co je věcně neplatné (dle dostupných údajů), nikoliv že zastáváte „názor“. Vaše pouhé přesvědčení, že to je pravda, z toho pravdivý fakt neudělá. A to ani když s vámi vaše přesvědčení budou sdílet tisíce dalších lidí.

Pokud konstatujete fakta, názory lidí vám mohou být ukradené. Můžete uspořádat všelidové hlasování na témata jako: „Je větší číslo 5 nebo 10?“, „Existují sovy?“ nebo „Je Země placka?“, ale skutečnost to nijak neovlivní.

Samozřejmě i mnohá vědecká nebo historická fakta jsou nejasná, vyžadují další ověření nebo se časem ukážou být neplatnými. „Je Země jediná obydlená planeta ve vesmíru?“, „Jaký je rasový původ starých Egypťanů?“… V obou případech neexistuje ani ve vědeckém světě shoda. Vesmír je probádaný zatím jen z velmi malé části a pozůstatky Egyptského umění a písemností jsou příliš stylizované, než aby vedly k jednoznačnému závěru. Takže v takových případech je zcela legitimní prázdné místo vědomosti „vyplnit“ názorem, jak by to mohlo být (například věřit, že některé pozemské nálezy jsou důsledek předchozí návštěvy mimozemské civilizace, nebo že staří Egypťané jsou potomci Afrických černochů, kteří se usadili v povodí Nilu) a doufat, že časem dojdeme k porozumění, resp. opravě původní představy. Samozřejmě k porozumění ověřenému a podpořenému fakty.

A zde přichází na řadu druhý bod: Kvalifikovanost názoru a důvod, proč ho zastávám. Ačkoliv názor jako takový nemůže být, technicky vzato, „špatně“, jeho váha se odvíjí od jeho vnitřní struktury a kontextu.

Dejme si příklad: Jako fanda fotbalové Barcelony se setkám s jiným fandou téhož klubu, který mi tvrdí, že podle něj je historicky nejlepším hráčem Barcelony Messi. V pohodě, proč ne. Během další diskuse s ním ale zjistím, že zápasy Barçy sleduje jen posledních 10 let a o historii klubu se nikdy nezajímal. Je dost možné, že i kdyby tomu tak nebylo a historii měl v malíku, zůstal by stále jeho favoritem mezi hráči Messi. Ale klidně pak mohl stejný titul přiřknout Maradonovi, ačkoliv za klub hrál jen krátce, nebo Cruyffovi… nebo komukoliv jinému, co já vím. V ideálním světě, kdybych ho na to upozornil, opravil by svůj výrok na: „Dobře, tedy Messi je podle mě nejlepším hráčem, kterého jsem kdy viděl hrát za FCB.“ Bylo by to fér, může mít své důvody, proč nezatoužil sledovat záznamy starých zápasů nebo pátrat v historii klubu. Dojít k názoru s omezenou platností z omezeného množství informací je zcela přirozené.

Problém nastává, když je omezená sada informací považována za širší, než ve skutečnosti je. Je rozdíl mezi prostou vírou a tím, že něco jednoduše nevíte. Můžete věřit (zvláště pokud chcete), že kouření v podstatě neškodí zdraví, a bývaly dokonce období, kdy byl takový názor obecně rozšířený (s podporou lobbingu tabákových společností). Ovšem při pohledu na mnohokrát prověřené statistiky výskytu různých chorob v souvislosti s kouřením a při konfrontaci s faktem, že kuřáci se v průměru dožívají o přinejmenším dekádu kratšího věku, můžete takový „názor“ v dnešní době zastávat jen s velkou mírou ignorance. Podobné to je například s tvrzením o mimořádně vysokém obsahu železa ve špenátu, kterému se obecně věřilo za mých mladších let. Později se ukázalo, že šlo o chybně provedené měření (z roku 1870), kde sehrálo vliv železo uvolněné z experimentálního vybavení, ale spousta lidí tomuto omylu navzdory jeho prokázání věří dodnes. (Mimochodem, zde je zajímavé, že celý omyl je ještě překryt další vrstvou silně zakořeněné legendy, která říká, že sice již víme, že špenát má podobné množství železa jako jiná listová zelenina, ale že šlo o pouhý překlep v nutričních tabulkách, který se postupně rozšířil dále. Přitom opravná a správně provedená měření byla provedena mnohem dříve, než tato druhotná legenda vůbec vznikla. Zajímavý doklad společenské mentální setrvačnosti.)

Jinými slovy, můžete dojít k nějakému názoru v rámci „informační bubliny“, což je ostatně něco, co všichni děláme přinejmenším během prvních roků života, kdy ještě máme příliš málo informací nebo je nedokážeme v dostatečné míře zpracovat. Nicméně dříve či později jsme často konfrontováni s reálným světem a docházíme k zjištění, že to, co jsme považovali za informovaný názor, byl vlastně jen mylný nebo nepřesný závěr založený na malém množství dat a našich pocitech. Tento proces probíhá v podstatě celý náš život, pouze (většinou) s ubývající četností. Mnoho, opravdu mnoho našich názorů se později ukáže jako neinformovaných nebo prostě a jednoduše chybných. A samotná skutečnost, že jsme jim po jistou dobu věřili, jim nedává o nic víc váhy nebo platnosti, stejně tak jako nemůžete od nikoho očekávat, aby takový názor respektoval jen proto, že je váš, ať už jste kdokoliv.

Nemáte právo na svůj názor. Máte právo na svůj informovaný názor. Nikdo nemá právo být neznalým.
                                                        – Harlan Ellison

Můžete se mýlit nebo být neznalý věci (ať už záměrně či nikoliv). Tomu se určitě ještě mnohokrát nevyhnete. Realita je na vás nezávislá a vaše pocity ji netrápí. A vzdělání, které by nás mělo se známou částí reality seznamovat, tu není proto, aby vám ztrpčovalo život. „Neinformovaní“ nejsou nějaká utiskovaná etnická menšina. V otázce informovanosti a kredibility názoru si každý nese svou vlastní zodpovědnost.

Říkáš mi, že Země je placatá, fotky z vesmíru jsou upravené a GPS satelity nám posílají podvržená data, abychom si mysleli něco jiného? Ne, to fakt ne. To není „tvůj názor“, za to se neschováš. Prostě a jednoduše… kecáš.

Volně přeloženo z článku Jefa Rounera, autorsky upraveno a doplněno.

Skončíme v černé díře?

Urychlovač LHC během instalace
Tubus urychlovače LHC v CERN během instalace.

Po havárii na nově vybudovaném urychlovači LHC v CERNu z roku 2008, která neměla povahu jaderného výbuchu, jak se něktěří domnívali, ale byla čistě technického charakteru (exploze chladícího média  – helia – v důsledku přehřátí části supravodivého obvodu) se opět schyluje k srážkovým experimentům. Při té příležitosti je stále častěji v médiích tlumočena obava z údajné možnosti vytvoření černé díry, která vzápětí pohltí celou naši planetu.

Během vysokoenergetické (řádově TeV) srážky těžkých částic (typicky protonů nebo jader olova) mohou být na velmi krátkou dobu vytvořeny natolik extrémní podmínky vysoké lokalizace hmoty a energie, že z principiálního hlediska skutečně není vznik objektu s vlastnostmi černé díry vyloučen. Faktem dokonce je, že se to očekává a jsou za tímto účelem již na LHC navrženy specifické experimenty. Samozřejmě se to takto neodborné veřejnosti běžně neprezentuje, aby nevznikaly zbytečné obavy. Jedna věc totiž je přítomnost černé díry jako takové, druhá je její potenciální nebezpečnost. Zkusím to tedy trochu vysvětlit.

Černá díraJednou z hlavních vlastností černé díry je její schopnost absorbovat vše včetně světla z časoprostorové oblasti vymezené tzv. horizontem událostí. Výjimkou jsou kvantově mechanické procesy v těsné blízkosti horizontu, které umožňují vznik virtuálních párů částic a antičástic. To pak může vést k efektu tzv. vypařování černých děr, které produkuje tzv. Hawkingovo záření (a tudíž ve skutečnosti nejsou černé díry tak docela černé). V důsledku toho má každá černá díra svou konečnou životnost, u kosmických černých děr jde však o prakticky zanedbatelný efekt. Hawkingovo záření je tím intenzivnější, čím menší je hmota díry a tudíž životnost černé díry záleží na její absolutní velikosti. Proto začíná být efekt vypařování významný až u mikroskopických objektů, u nichž jsou dominantní kvantové jevy.

Pokud tedy vznikne během srážkových experimentů v urychlovači miniaturní černá díra, v důsledku Hawkingova vypařování ztratí veškerou svou hmotu v řádu nanosekund. Aby černá díra přežila alespoň tisícinu sekundy, musela by mít hmotnost zhruba jako planetka o průměru 100 metrů (1011 kg). LHC urychlovač uděluje protonům kinetickou energii odpovídající hmotovému ekvivalentu (dle vzorce E=mc2) menšímu než 1 gram. Aby se taková černá díra nevypařila, musela by během svého jepičího života pohltit hmotu řádově nejméně 1011 kg, což nemůže stihnout i kdyby „vymetala“ své okolí rychlostí světla.

Nejsem jaderný fyzik (přestože v CERNu jsem jistou dobu pracoval, takže si to o mně leckdo myslí :), abych byl schopen posoudit případné další scénáře, které mohou proběhnout při vysokoenergetických interakcích částic v urychlovači LHC, a v mnohém nemají dosud jasno ani špičkoví vědci v tomto oboru (například výše uvedený model nepředpokládá vliv dalších faktorů, které by teoreticky mohly prodloužit životnost případných černých děr, např. přítomnost silného magnetického pole). Pokusil jsem se však alespoň vysvětlit že laická představa o uměle vytvořené černé díře, která v mžiku pohltí celou naši planetu (přinejmenším), není založena na reálných základech.

Jedinou alternativou je Slunce

Jak už jsem předeslal v jednom z předchozích článků Jak získat peníze na perpetuum mobile, při výběru vhodných řešení nějakého produkčního problému (zde konkrétně výroby elektrické energie) je nejdříve dobré zvážit kapacitní omezení všech dostupných zdrojů. Zúžíme tak svůj záběr jen na cesty, které nejsou předem slepé.

Před několika týdny jsem se zúčastnil přednášky Prof. Daniela Nocery, který je mimo jiné i vládním poradcem USA pro energetiku. Budu zde vycházet z poměrně aktuálních čísel a úvah, které prezentoval. Z doby, kdy jsem se o podobné problémy začal zajímat (na konci 80. let), si pamatuji přibližnou hodnotu celkové energetické spotřeby lidstva, která tehdy odpovídala trvalému příkonu okolo 8 TW. Dle Nocery toto číslo do roku 2000 vzrostlo na 12.8 TW, v roce 2007 dokonce až na 14.6 TW.

Spotřebu energie (W) lze vystihnout poměrně jednoduchým vzorcem, který není ničím jiným, než definitorickým rozdělením do tří členů:

W = N × (GDP/N) × (W/GDP)

Co jednotlivé členy znamenají, proč zrovna takové rozdělení? Je to poměrně logické:

  1. N je počet obyvatel; čím více obyvatel, tím vyšší spotřeba
  2. GDP/N je hrubý národní produkt na obyvatele; vyjadřuje skutečnost, že čím více se vyrábí, tím více se spotřebuje energie
  3. W/GDP je spotřeba na jednotku hrubého domácího produktu; ukazuje se, že tato hodnota je napříč různými ekonomikami téměř konstanta

Vzhledem k poslednímu bodu je tedy růst W dán hlavně nárustem počtu obyvatel a zvyšující se produkcí jednotlivých zemí. Např. kdyby měly všechny země na světě stejný hrubý domácí produkt na hlavu jako USA, byla by celosvětová spotřeba více než sedminásobná, konkrétně 102 TW.

Energetický problém lidstva má tedy dvě východiska, která je možné nezávisle kombinovat. Prvním je snížení spotřeby energie, druhým zvýšení její produkce. Když se podíváme na výše uvedený vzorec, snížení spotřeby by bylo možné buď přes

  1. Snížení počtu obyvatel,
  2. Snížení celkové výroby,
  3. Energetické zefektivnění výroby a domácností,

případně jejich kombinaci.

Asi tušíte, že pokud se na to díváme realisticky, ani jedna z těchto cest není příliš schůdná a těžko ji nějak direktivně ovlivnit, snad jen s výjimkou zefektivnění výroby (u domácností bychom nejspíš narazili, neboť by to vedlo k požadavku sníženého komfortu, na který jsou už lidé díky různým spotřebičům zvyklí). Nezbývá nám tedy než se soustředit na hledání nových zdrojů energie, případně lepší využití těch dosavadních. Nemůžeme očekávat, že lidé dobrovolně sníží svoji životní úroveň (nebo životní komfort, chcete-li), ale pokud se objeví nová výhodná a cenově dostupná technologie, začnou ji časem využívat.

Budeme tedy potřebovat stále více energie. Ale kde ji vzít? Ze současných nejvýznamnějších zdrojů by nám podle dosavadních odhadů ropa vystačila (při zachování konstantní spotřeby) na jedno až dvě století, zemní plyn asi dvakrát déle, uhlí bychom pak měli na možná 1000-2000 let. Za předpokladu pokračujícího růstu spotřeby však tyto hodnoty budou spíše poloviční až čtvrtinové. Až dojde ropa, mohli bychom současné ropné produkty (paliva, maziva, kosmetika, plasty apod.) vyrábět ještě nejakou dobu z uhlí, technologie k tomu máme již nyní, ovšem bylo by to mnohem dražší.

V každém případě jde o zdroje omezené a navíc při jejich spalování dochází k uvolňování nežádoucích plynů, zejména CO2, jehož obsah v atmosféře je již nyní o třetinu vyšší než v předprůmyslové éře. Pro výrobu elektrické energie je tedy ze současných technologií nejlepší jaderná energie, která není zdrojem skleníkových ani zdraví škodlivých plynů a pro níž máme relativní dostatek paliva (řádově staletí, navíc je zde možnost recyklace jaderného odpadu). Ani to však není řešení navždy, nehledě na to, že v některých zemích je výstavba jaderných elektráren omezena nebo zcela zakázána z obavy před možnou havárií a kvůli potížím s likvidací jaderného odpadu. Ač nechci tyto záležitosti nijak bagatelizovat, s našimi současnými možnostmi je jádro jedinou rozumnou možností ve velkém měřítku.

Zároveň je však třeba intenzivně pracovat na výzkumu a vývoji nových způsobů získávání a skladování energie, které by využívaly obnovitelných nebo reálně nevyčerpatelných zdrojů. Alternativ tu máme již několik: vodní a příbojové elektrárny, větrné elektrárny, spalování biomasy, geotermální zdroje, sluneční elektrárny. Jaderná fúze je zatím pohádkou budoucnosti. Otázkou je, co z toho má potenciál vytrhnout lidstvu trn z paty.

Většina výše jmenovaných využitelných energetických zdrojů (a to i včetně té ropy, plynu a uhlí) má tak jako tak původ ve sluneční energii. Záleží však na tom, co vše stojí (a případně vzniká jako vedlejší produkt) na cestě mezi sluncem a místem, kde energii spotřebujeme, a samozřejmě také jak je tento proces účinný a jaká je jeho celková kapacita. Vezměme to popořadě:

  • Biomasa: Teoretická účinnost fotosyntézy je 10.5%, ale u reálných rostlin a bakterií se pohybuje nejvýše v oblasti 0.5-1%. Kdybychom věnovali pětinu povrchu celé země výhradně produkci biomasy za účelem energetického využití, získali bychom celkově nejvýše 7-10 TW. Zpracování i spalování biologické hmoty je navíc zdrojem již zmíněných nežádoucích plynů. Obdělávání půdy pak vede k další spotřebě a emisi zplodin, paradoxně se k výrobě „bioenergie“ využívají zcela „nebio“ fosilní zdroje. To však lze pokládat za přechodný stav, postupem času by se mohla část produkce zpětně využívat ve vlastní výrobě.
  • Vítr: Teoretický limit větrných elektráren při předpokladu průměrné rychlosti větru 5 m/s a umístění ve výšce 10 nad zemí jsou pouhé 2 TW. Celkové množství kinetické energie ukryté v pohybu atmosféry sice odpovídá výkonu 870 TW, omezená účinnost větrných elektráren a nemožnost využití atmosféry v celém jejím objemu nám však nedá k dispozici více než zlomek této hodnoty. V současné době těžíme z energie větru pouhých 75 GW celosvětově.
  • Voda: Teoretický limit využitelné energie ze všech světových toků hydroelektrárnami je z globálního hlediska nepříliš významný – 7 TW, v praxi spíše o řád méně. Dalších několik stovek GW by nám mohlo přinést využití energie příboje a přílivu/odlivu, to se ale vzhledem k výrobním nákladům potřebných zařízení jeví jako značně neekonomické. Celkový výkon pohybu oceánských a mořských vod (příboj, příliv, mořské proudy) je v řádku desítek TW, ale využitelnost je malá a v praxi omezená spíše na pobřežní oblasti.
  • Geotermální zdroje jsou na tom podobně, ani při nejlepší vůli z nich nevytěžíme více než několik málo desítek TW.
  • Slunce: Teoretický limit je úctyhodných 120 000 TW. Jde o dobře distribuovaný zdroj, který navíc není svázán s žádným médiem – proud fotonů na Zemi dopadá přímo ze svého zdroje. Využití slunečního světla nevede k produkci zplodin.

Jak vidno, budoucnost je jednoznačně ve sluneční energii, resp. v jejím přímém využití. Ostatní typy elektráren budou vždy jen doplňkovými zdroji. Potíž solárních článků je bohužel zatím v tom, že elektřina jimi vyrobená je tisíckrát dražší než získaná konvenčními metodami a množství energie potřebné k výrobě článku se za celou jeho životnost nevrátí (nemluvě o surovinách, spotřebovaných a uvolněných během produkce). Mělo by však být jen otázkou času, kdy budou k dispozici technologie levnější a účinnější než ty dosavadní. Základní dva směry výzkumu jsou:

  • Přímá výroba elektrické energie ze světla, ať už jde o systémy anorganické (typicky polovodiče nebo sofistikované nanostruktury) či organické (princip umělé fotosyntézy). Výhodou tohoto systému je jejich uzavřenost, tj. že nevyžadují žádný přísun materiálu.
  • Přeměna světelné energie na chemickou, např. rozklad vody na vodík a kyslík nebo produkce kapalných paliv z jednodušších, běžně dostupných a obnovitelných látek. Výhodou této metody je, že zároveň řeší i problém skladování energie, neboť nevyrábí přímo elektřinu, ale energii ukládá do chemické vazby.

Osobně jsem přesvědčen, že se prosadí oba základní typy a budou existovat souběžně, každý tam, kde bude jeho využití výhodnější. Základní otázka pro hledače energetických alternativ má však každopádně jedinou rozumnou odpověď – Slunce. A jednou možná také jadernou fúzi, pokud se nám ji podaří někdy ochočit. To platí bez ohledu na to, co se nám snaží vsugerovat zelená lobby, které masivní dotování větrníků, vodních turbín a pěstování řepky připadá jako ta správná cesta z energetické krize.

Indecisive chemistry

The following text is the press release article I wrote few years ago upon request of Media Relations of University of California, Irvine, shortly after I started working for them. Finally, it hadn’t been used because the article was based on my scientific results from Fritz-Haber Institute of Max Planck Society, then published in the Science magazine (Science 304 (2004), pages 1639-1644) under the title Fluctuations and Bistabilities on Catalyst Nanoparticles.

Since the press release was written with quite a general public in mind I tried to provide enough simple background so that most people could understand at least the main idea of our science findings.

Fluctuations and Bistabilities on Catalyst Nanoparticles

Nanočástice Pd na tenké vrstvě Al2O3 (STM obrázek).

Although the most of people even do not realize it catalysts play an irreplaceable role in our lives. Catalysis is not an industry by itself but rather a key technology used by many industries. General importance of catalysis is, e.g. for petroleum working industry, automotive industry, biochemistry, pharmaceutic industry, fuel cells development etc. The number of catalytic materials applied in industry is very large and catalysts come in many different forms, e.g. powders, spheres, tablets, wires, and other solid forms as well as a coating. Among the most commonly used are heterogeneous catalysts in the form of inert porous solids or powders covered by highly dispersed chemically active metal (typically precious metals like platinum, palladium, and rhodium).

What exactly is catalysis about? Catalysis is a phenomenon by which a relatively small amount of a substance, called a catalyst, accelerates a chemical reaction without itself being consumed by the reactions they aid. Moreover, catalysts not only enhance the rates of reaction (=effectiveness), but they also direct reactants to specific products (=selectivity).

Catalysis generally means the reduction of the activation energy required for a reaction. Realizing this fact the importance of the catalysis appears to be obvious: The less energy required means that a reaction can take place at lower temperatures and pressures which results in savings in terms of energy, raw materials and plant and process costs as well as in higher yields through active control of the reactions. Moreover, the presence of a catalyst can make possible a reaction that would not run otherwise. That is why the catalysis is extremely attractive not only from economic but also from environmental considerations.

AFM obrázek litograficky připravených nanočástic Pt na SiO2.

The pure metals are usually not capable of catalyzing the reaction with the desired selectivity and effectiveness. Therefore a certain „fine-tuning“ has to be done, where the active metal has to be adapted to the specific application. In this report we focus to so-called heterogeneous catalysis where the catalyst has a different phase (typically solid) than the reactants (usually gas or liquid). The well-known example of heterogeneous catalyst is the automotive exhaust converter where porous oxide structure is covered by finely dispersed particles of platinum or rhodium or their combination.

One of the most fascinating aspects of heterogeneous catalysis is that it is largely an empirical science. The application of catalysis has been a necessity for the chemical industry for at least 150 years, while the experimental techniques for investigation of catalysis at the atomic level did not become routine until less than 25 years ago. Large amounts of empiric knowledge exist that awaits systematic investigation. A huge barrier in better understanding comes from the vast complexity of real catalysts which is not directly accessible by existing experimental techniques at microscopic level. Thus the catalytic phenomena are usually studied on the model systems with strongly reduced complexity but still highly relevant to the realistic structures.

In our case, the model catalyst consisting of small metal islands deposited on the surface of a perfectly flat aluminum and silicon oxide has been used. We compared different samples with average lateral size of metal particles varying between the few to several hundreds of atomic diameters (2 to 500 nanometers).

The investigation of the mechanisms of the catalysis is highly motivated by the desire to make development of the novel catalysts and optimization of the existing ones more rational and efficient. Appreciable progress has been done in last two decades and there were theories and models developed in order to explain and predict the elementary processes during catalyzed reaction. However, there are several phenomena remaining which cannot be explained by the present theories.

One of the much discussed „mysteries“ in heterogeneous catalysis are so-called size effects, i.e. the role of the size of the active metal particles. Size effects are a common phenomenon and are typically taken advantage of in catalyst optimization. Just by changing the size of the metal particles their chemical properties may vary in very broad range despite the elemental composition of the catalyst is unaffected. It is because each particle is the ensemble of atoms which are interacting between each other. The physical and chemical behavior of a single atom is different from behavior of the cluster of many atoms especially because of the mutual bonds they form to their neighbors. The less atoms are in a single cluster the more similar to a single atom they behave and vice versa. By changing the number of atoms in a metal particle catalytic properties can be „tuned“.

Unfortunately, the exact origin of size effects remains highly ambiguous in most cases. In our paper we are revealing a part of the „mystery“ around heterogeneous catalysis which arises as a consequence of the limited dimension of the active particle. We focused on a general but widely ignored „nanoscale“ effect, which is the influence of fluctuations of molecules present in a chemical reaction on the surface of the catalyst. During the reaction all molecules (both reactants and products) sitting on the active surface of the catalyst (so called adsorbed molecules) continually change their actual positions due to the thermal vibrations generally present in any matter, in other words they fluctuate their local density. This movement is responsible for rapid rearrangement of the adsorbed molecules and their random motion across the surface (so called surface diffusion) which can be addressed to a kind of microscopic „communication“ between different areas of the catalyst.

Although this movement is extremely fast it occurs on a very small scale in the order of size of an atom. Thus, if the metal particle is sufficiently big there may coexist different spots on it which do not „communicate“ to each other efficiently because the molecule originally located on one side of the particle is consumed by the reaction before it reaches the other side. It means that, in general, we can have different physical conditions on the same single particle (e.g. different absolute density of the adsorbed molecules, different abundance of reactants and products, etc.). Accordingly on the particular catalyst one can observe reaction running in more different regimes in the same time. This effect is called multistability (or bistability in the case of coexistence of just two reaction regimes).

Besides the particle size its microscopic structure plays an important role. It is obvious that movement of the molecule on the surface is different depending if the surface is perfectly flat or it consists of many defects like steps, edges, bumps etc. Usually the smaller is the particle the higher density of such defects and other irregularities is observed.

According to what has been said about the relation between the magnitude of surface fluctuations and the occurrence of multistability on the catalyst it implicates that when the intensity of fluctuations is increased to a certain level the multistability will vanish because of increased intensity of „molecular communication“. It means that just by changing the size of the active metal particles we can obtain a catalyst that exhibits different behavior towards the particular chemical reaction. This is a fact commonly accepted, however, in former experimental studies performed by other research groups the possible role of the surface fluctuations has not been considered. Taking fluctuations into account can help us explain some of the discrepancies and „mysterious phenomena“, which people involved in catalytical chemistry have been experiencing every day.

The results we reported should likely hold not only for the specific case we studied, but also for other reactions exhibiting similar kinetic multistabilities. Besides that, our findings are consistent with previous theoretical predictions which have never been confirmed experimentally before, though. Regarding the crucial importance of the rational approach in modern catalysis mentioned above the implications of our findings for the industry and the environment are quite obvious.

Jak získat peníze na perpetuum mobile

Perpetuum mobile. Tedy… jeden z neúspěšných pokusů o něj.

Ekologická témata jsou v posledních letech jedněmi z nejfrekventovanějších a stále častěji s nimi žonglují i politici. Globální oteplování je celosvětový strašák a podrobnější zamyšlení nad jeho oprávněností nechám na některý z příštích článků. Samozřejmě nepochybuji o nutnosti vést lidi k úspornějšímu využívání energie a přírodních zdrojů obecně (ačkoliv je to dost sisyfovská práce), ani o nutnosti hledat a aplikovat jiné masové zdroje energie, než kterých využíváme nyní. Fosilních paliv nám zbývá řádově na jedno století, nukleární energie je dobrým řešením na mnohem delší dobu, ale zase vyvolává neustálé pochyby o její bezpečnosti, a ostatní dnes známé technologie uspokojí z celosvětové spotřeby maximálně desetiny procent až procenta.

Na vzedmuté vlně zájmu o stav životního prostředí, ale zároveň i strachu šířeného ekologisty (pozor, neplést s ekology, mám zde na mysli enviromentalistické aktivisty) se pochopitelně sveze kdejaký projekt. Tedy vedle těch seriózních i ty, jejichž jediným cílem je vysát z důvěřivého investora, nebo ještě lépe fondů evropské unie nějaký ten peníz. Každá upřímně míněná snaha o nalezení alternativních zdrojů energie nebo zefektivnění těch stávajících má určitě svůj smysl a rozhodně by nebylo rozumné ani zodpovědné předem zavrhovat nějaký výzkum jen proto, že nám připadá pravděpodobnost jeho úspěšného završení málo pravděpodobná. S tímto přístupem by spousta klíčových vynálezů nikdy nespatřilo světlo světa.

Jsou ovšem případy, kdy lze pouze na základě základních fyzikálních zákonů a odhadu celkových energetických bilancí bez zkoumání bližších detailů rovnou říci, že je úspěch vyloučen. Jestli za tím pak stojí prvotní záměr ziskuchtivého „výzkumníka“, nebo pouze jeho naivita a nedostatek znalostí v přírodních vědách, je otázkou z jiného soudku, kterou ať si řeší ti, z jejichž kapsy je to placené.

Každou chvíli se dočteme v novinách o novém úžasném projektu, založeném na větrné, vodní, geotermální, nebo třeba příbojové energii. V první vlně můžeme vyloučit jednoznačné snahy o projekty založené na předpokladu neplatnosti (resp. ignoraci) některého ze základních termodynamických zákonů. Jako první to odnese evergreen, snažící se tiše obejít 1. zákon termodynamiky, tedy perpetuum mobile prvního druhu, které vyrábí více práce než kolik energie přijme. Dalším velmi typickým případem jsou zařízení, která pro svoji činnost pouze odebírají teplo, tedy perpetuum mobile druhého druhu, ignorující pro změnu princip rostoucí entropie.

V druhé vlně se pak stačí zamyslet nad tím, jaká je maximální teoretická kapacita primárního zdroje energie, která by měla dané zařízení pohánět. Víme zhruba, kolik je na světě vodních toků a jaký jejich objem a potenciální energie v nich skrytá. Víme také přibližně, kolik na zemský povrch dopadá slunečního svitu a kolik v sobě nese wattů. Dokonce i na celkové množství kinetické energie větru existují (alespoň řádové) odhady. Konkrétním číslům se budu věnovat v dalším článku. Zatím se jen pokouším ukázat, že pokud se budeme držet naší matičky Země, existují zde limity, které nepřekročíme i kdyby se vědci a inženýři celého světa postavili na hlavu.

Vedle toho existují limity méně striktní a tedy v zásadě překonatelné, ovšem zřejmě nikoliv v současné době. Jsou jimi především omezení ekonomická. Budeme-li mít v ruce návrh nějaké metody výroby nebo skladování elektrické energie, můžeme na základě použité technologie odhadnout její finanční náročnost a tím pádem (při znalosti životnosti zařízení) i návratnost. Přitom lze samozřejmě vycházet pouze z technologií, které jsou v naší době dostupné, pokud součástí projektu není vývoj nějakých zásadně nových, které by se při výrobě uplatnily (což právě často není).

Samozřejmě i projekty, které si během své celé životnosti na sebe nevydělají, mohou mít svůj určitý smysl, a to v případě, kdy ušetří neobnovitelné zdroje, u nichž se dá v blízké budoucnosti čekat nárůst ceny. Ovšem to jen pokud se při jejich výrobě nespotřebují suroviny a energie vytvořené právě z takových nenahraditelných zdrojů, což většinou bohužel platí. Ne nadarmo se pak říká, že co není ekonomické, není ani ekologické. Cena přírodních zdrojů je totiž určena kombinací poptávky po nich, jejich dostupnosti a především pak celkového množství jejich zásob. Poptávku můžeme do určité míry omezit umělým navýšením ceny, dostupnost lepšími technologiemi těžby a zpracování. Množství dané suroviny na Zemi je však třeba brát jako předem dané (pro rýpaly: za předpokladu, že rychlost jejich spotřeby je mnohem větší, než rychlost jejich obnovy, což bezezbytku platí o všech fosilních palivech i nerostných surovinách).

Až se tedy příště zase dočtete o nějakém „převratném“ nápadu nebo vynálezu, který má lidstvo vyvést z energetické krize, zkuste se na něj podívat skeptickým okem a udělat si alespoň hrubý odhad, jestli spíše nespadá do říše snů než do našeho reálného světa. Možná vás pak překvapí, na co všechno lze v dnešní poněkud zpaničtělé době získat dotace. A možná pak také začnete kritičtěji přijímat hysterické „zaručené zprávy“ o geniálních projektech, zadupaných do země zlým ropným lobby (které je buďto odkoupilo a nyní drží pod pokličkou, nebo jejich autory zastrašuje a neumožňuje jim s nimi vyjít na veřejnost). Obávám se, že jsou to většinou právě nápady z kategorie těch, jejichž možnosti využití neleží ani v rovině teoretické.

Kdekdo by mohl namítnout, že zkusit se má všechno, že každý pokus o nalezení alternativního zdroje energie je chvályhodný nebo že předem nemůžeme vědět, jak nějaký výzkum dopadne. Jenže náš čas ani prostředky nejsou neomezené a čím více obojího ušetříme na projektech, které jsou odkázány k neúspěchu už na základě jejich základních předpokladů a principů, tím více nám zbyde na projekty alespoň potencionálně nadějné.