
Iontové a vibrační spektroskopie Ion and Vibrational Spectroscopies

(NEVF168)

Viktor Johánek viktor.johanek@mff.cuni.cz

Iontové spektroskopie (doc. K. Mašek)

- Vibrační spektroskopie
 - ✓ přehled a principy
 - IR vibrační spektroskopie
 - ✓ Ramanova spektroskopie

Vibrational spectroscopy Vibrační spektroskopie

- Overview of vibrational spectroscopies
- Theoretical background
- Vibrational-Rotational modes

Introduction

Vibrational spectroscopy

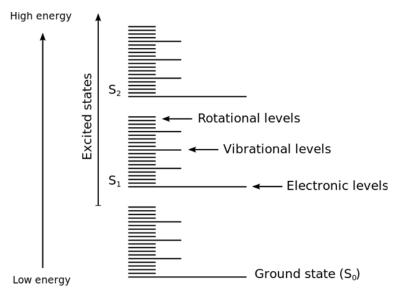
- non-invasive label-free molecular spectroscopy
- provides bond-specific chemical analysis
- used in organic/anorganic chemistry, geology, material, environmental, and biomedical sciences etc.

Atoms in molecules vibrate with freqs. in the IR range

Vibrational spectroscopy methods

- 1) Photon-induced (optical) IR, Raman
- 2) Electron-induced HREELS, IETS
- 3) Neutron-induced Inelastic neutron scattering

MM


Light interaction with material:

- *hv* Transmission
 - Reflection
 - Absorption → IR spectroscopy , UV-Vis
 - Luminescence → Luminescence spectroscopies
 - Elastic Scattering
 - Inelastic Scattering → Raman

IR & Raman related textbooks:

- Larkin, P.: Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier, Waltham, 2011
- Schrader, B.: Infrared and Raman spectroscopy: Methods and Applications, VCH, Weinheim, 1995
- Griffiths, P. R. & De Haseth, J. A.: Fourier Transform Infrared Spectrometry, John Wiley & Sons, Hoboken, 2007
- Ferraro, J. R. & Nakamoto, K.: Introductory Raman spectroscopy, Academic Press, San Diego, 1994
- Gauglitz, G. & T. Vo-Dinh, T.: Handbook of Spectroscopy, Wiley-VCH Verlag GmbH & Co. Weinheim, 2003

Energy-level diagram of a molecule

Internal energy

$$E_{int} = E_{el}(n) + E_{v}(v) + E_{r}(j)$$

Units

- Frequency [Hz]
- Wavelength [nm], [µm]
- Wavenumber (absolute, relative) [cm⁻¹]
- Energy [eV], [kJ/mol], [kcal/mol]

Basic conversions:

1 eV \approx 96.5 kJ/mol \approx 1.24 μ m \approx 8066 cm⁻¹ \approx 242 THz

Introduction

Chemical and structural analysis by vibrational spectroscopies

- Determination of chemical groups within molecule
- Compound identification (fingerprint match to spectral databases)
- Monitoring of chemical reactions in-situ

Vibrations => **Bond** specific analysis

Basic characteristics of optical vibrational spectroscopies:

Advantages

- non-invasive
- provides molecular specificity
- versatile: can work with solids, liquids, gases; crystals, powders, thin films, adsorbates, ...
- in-situ and microscopy capabilities
- · easily adapted for operando experiments
- table-top instruments (often turn-key)
- large tunability of photon sources (or use of broadband sources)

Disadvantages

- minimal elemental specificity
- not all modes active (complementary methods can be used)
- at least partial optical transparency along the beam path required
- sensitivity strongly sample dependent and often low
- acquisition times sometimes long

Theory basics – optical processes

Optical response of matter upon light irradiation:


```
\chi_n n-th order susceptibility ((n+1)-th-rank tensor)
```

=> Optical spectroscopy methods:

- Linear optical processes involving excitation:
 - IR absorption spectroscopy

Raman spectroscopy

Vibrational spectroscopies

UV-Vis spectroscopy – electronic transitions

• Non-linear optical processes

- typically surface specific (broken symmetry or alignment requirements)
- Sum frequency generation (SFG) for aligned molecules only (surfaces, crystals, in ext. el. fields, ...)
- Second-harmonic generation (SHG) special case of SFG
- Complementary vibrational spectroscopy (CVS) simultaneous IR & Raman
- Coherent anti-Stokes Raman scattering spectroscopy (CARS) 3rd order
- Third-harmonic generation (THG) 3rd order

Cross sections

- Electronic (UV-Vis) absorption spectroscopy: 10⁻²⁰ m²
- Fluorescence spectroscopies: $10^{-21} 10^{-23} m^2$
- Vibrational IR absorption spectroscopy: 10⁻²³ m²
- (Non-resonant) Raman spectroscopy: 10⁻³³ m²
- Resonance Raman spectroscopy: 10⁻²⁹ m²
- Surface enhanced Raman scattering: $10^{-21} 10^{-27} m^2$

Linear optical vibr. spectroscopies - basics and classification

Infrared (IR) absorption spectroscopy Resonant effect – absorption upon transmission or reflection

Based on **variation of dipole moment** along normal coords => active for anti-symmetric vibrations that alter dipole moment (polar bonds)

Q ... vibration coordinate (Q = 0 ... near equilibrium)

- $\vec{\mu}$... dipole moment
 - 1st rank tensor: vector (μ_x, μ_y, μ_z)
- Bond is a "spring"
- Often used for identification of functional groups of molecules

Raman scattering spectroscopy

Non-resonant effect – scattering from sample

Based on **molecular polarizability** along normal coordinates => active for symmetric vibrations that alter polarizability

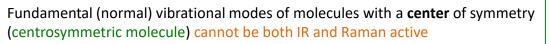
$$I \propto \left(\frac{\partial \boldsymbol{\alpha}}{\partial Q}\right)_{Q=0}$$

 $ec{\mu} = \pmb{lpha} ec{E}$... induced dipole moment under el. field $ec{E}$

=> Depends on mutual field–molecule orientation & $\vec{\mu}$ generally in different direction than \vec{E}

α ... polarizability

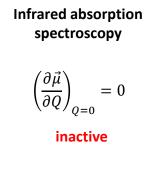
2nd rank tensor: matrix $\begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}$

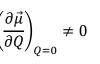

- 3D volume (polarizability ellipsoid: $1/\sqrt{\alpha}$ from c.o.g.)
- Typically used for identification of skeletal structures
- Complementary information about molecular vibrations

Usage

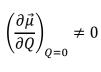
Physical effect

Linear optical vibr. spectroscopies – basics


Rule of mutual exclusion

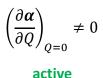


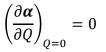
[some exceptions exist]


=> In turn, it allows to identify this symmetry element by comparison of IR & Raman

- some vibrations can be inactive ("silent") in **both** methods e.g. in ethylene (C_2H_4 , 1 of 12), = benzene (C_6H_6 , 8 of 30), tetrachloroplatinate ion ([PtCl₄]²⁻), fullerene (C_{60} , 32! of 46), ...
- can be derived from group theory

active

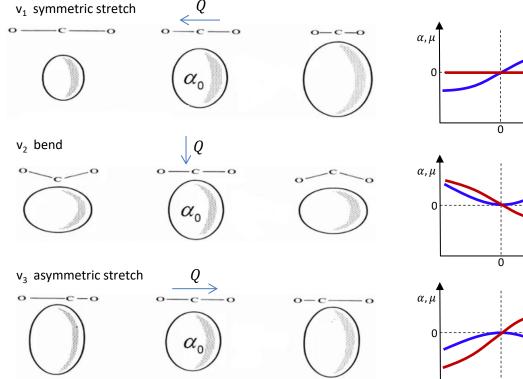

active


C₂H₄ torsional mode (out-of-plane twisting)

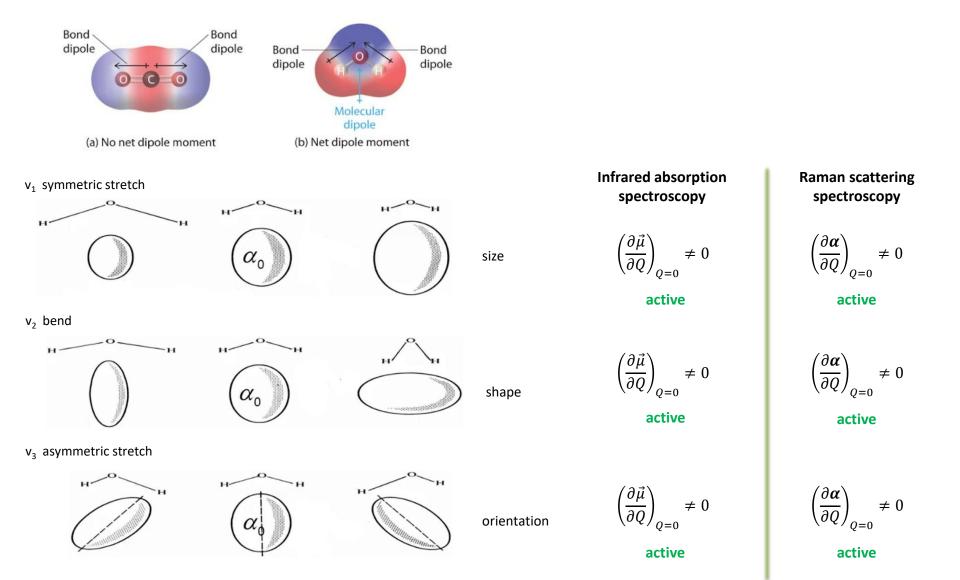
 No change in either dipole moment or polarizability



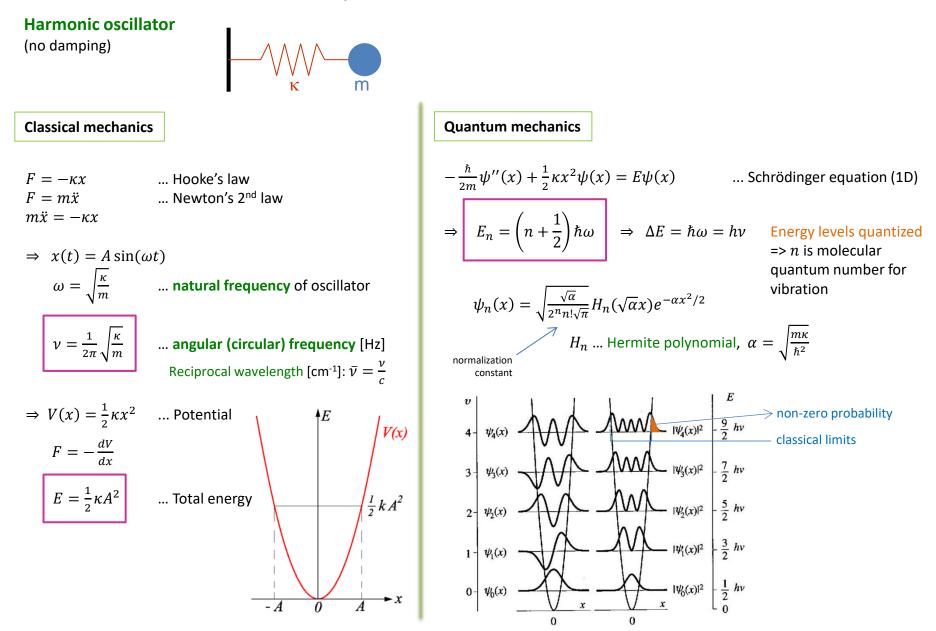
Raman scattering spectroscopy



inactive (Rayleigh scattering only)



inactive (Rayleigh scattering only)

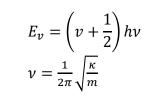


Linear optical vibr. spectroscopies – basics

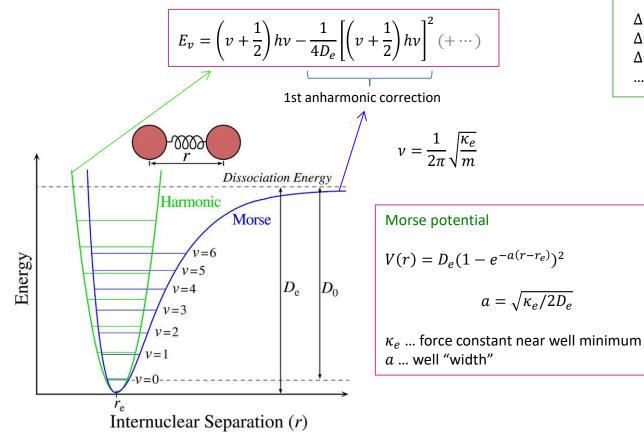
When symmetry broken - vibrations can be both IR and Raman active

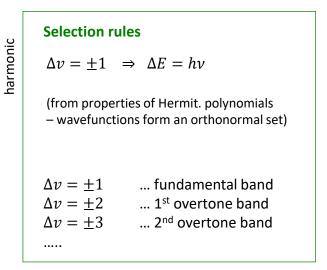
Theory basics – molecular vibrations

Harmonic:

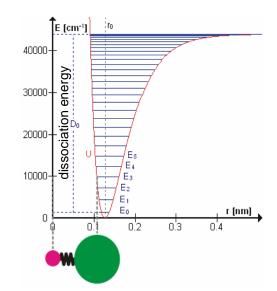

٠

Vibrational spectroscopy


Theory basics – molecular vibrations


 $a = \sqrt{\kappa_e/2D_e}$

Harmonic vs. anharmonic potential (QM)



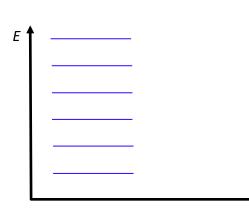
Anharmonic: Morse potential => vibrational levels not spaced equally ٠

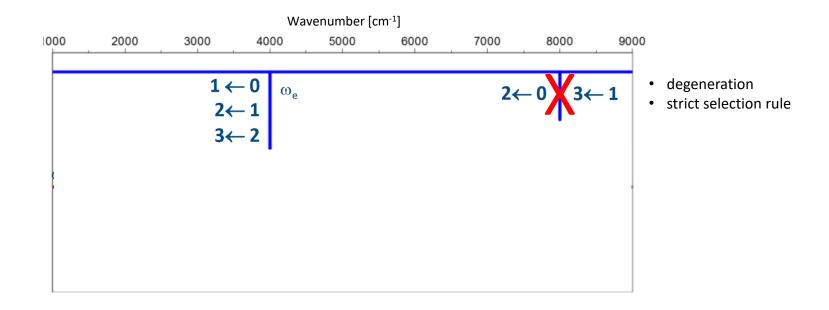
HCI molecule as an anharmonic oscillator vibrating at energy level E₃

Vibrational spectroscopy: Fundamentals

Vibrational spectroscopy

Theory basics – molecular vibrations


Harmonic vs. anharmonic spectrum


Diatomic molecule

harmonic approximation

$$E_{v} = \left(v + \frac{1}{2}\right)\omega_{e} - \left(v + \frac{1}{2}\right)^{2}\omega_{e}\chi_{e}$$

hot bands

Vibrational spectroscopy

Theory basics – molecular vibrations

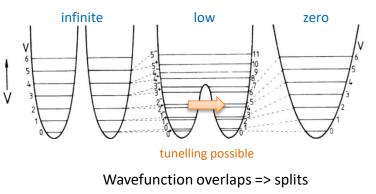
Harmonic vs. anharmonic spectrum

Diatomic molecule AAAA E harmonic approximation $E_{\nu} =$ $\omega_e \chi_e$ ω_e incl. anharmonic contribution ω_e ... harmonic frequency (= $h\nu_e$) χ_e ... anharmonicity constant Wavenumber [cm⁻¹] 000 2000 3000 4000 5000 6000 7000 8000 **1**←0 ω_e 2← 2←1 3←2 anharmonic shift $ω_{e}(1-6\chi_{e}) \quad ω_{e}(1-4\chi_{e})$ **2**← **0** 3←0 $3 \leftarrow 2 \ 2 \leftarrow 1$ $\omega_{e}(2-6\chi_{e})$

- 9000 degeneration strict selection rule anharmonic shift no selection rule ٠ separation (degeneration removed) => more complex spectrum

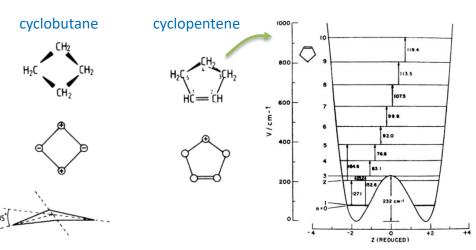
overtones

Appendix

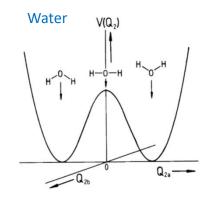

Vibrational spectroscopy

Theory basics – molecular vibrations

Vibrational potentials with multiple minima

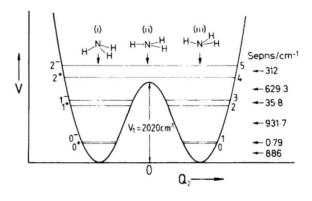

- can occur for polyatomic molecules

Barrier to planarity/linearity:

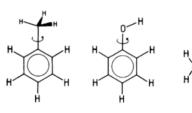


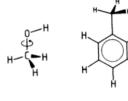
Ring-puckering vibrations

- Bending vibrations out of the plane of the ring



Bends of triatomic non-linear molecules


Inversion vibrations


Ammonia – 2 pyramidal configurations, can switch via planar conf.

Torsional vibrations

- twisting motion between 2 rigid parts of a molecule

toluene

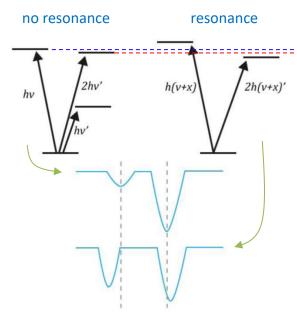
phenol

ethylene methanol

fluorotoluene

Theory basics – Fermi resonance

Fermi resonance

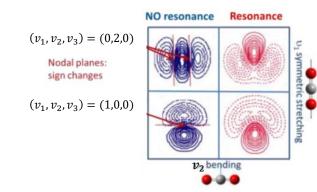

 – anharmonic effect: interaction (coupling) of vibrations with (coincidentally) similar frequency (quantum mixing)

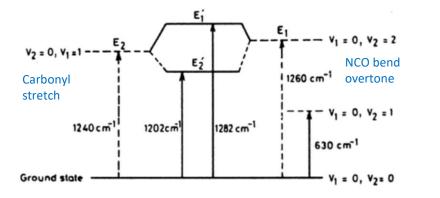
Criteria for Fermi resonance:

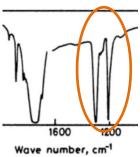
- 1) The 2 vibrations must have the same symmetries
- 2) The transitions have almost the same energy

Fermi resonance effects:

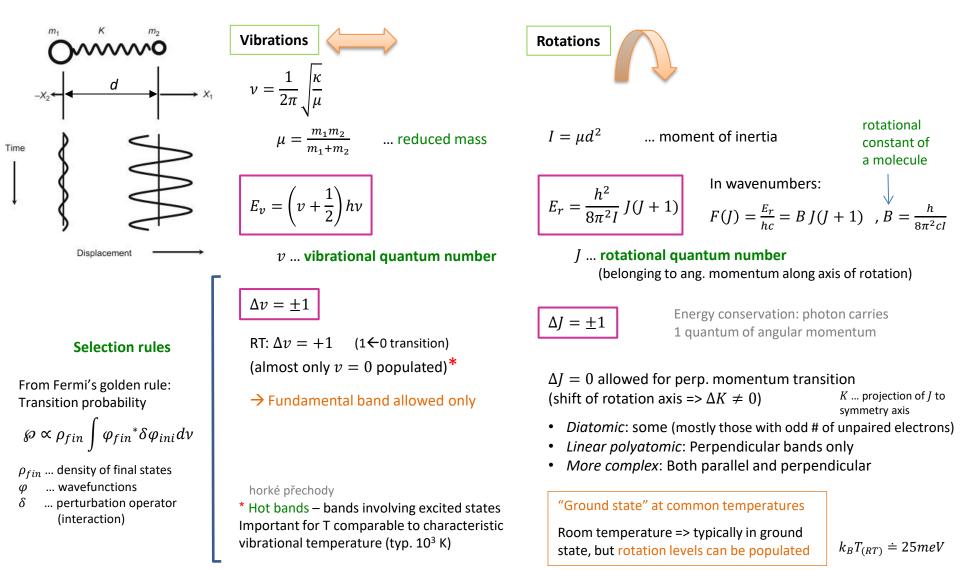
- 1) The high energy mode shifted to higher energy and vice versa (=> larger split)
- 2) Intensity gain for the weaker band and vice versa
- · Often occurs between normal and overtone modes
- Closer the energies, stronger the interaction
- The two transitions can be thought of as a linear combination of the parent modes (wavefunctions), forming a diad
- Quantified by Fermi coupling constant F. vazebná konstanta

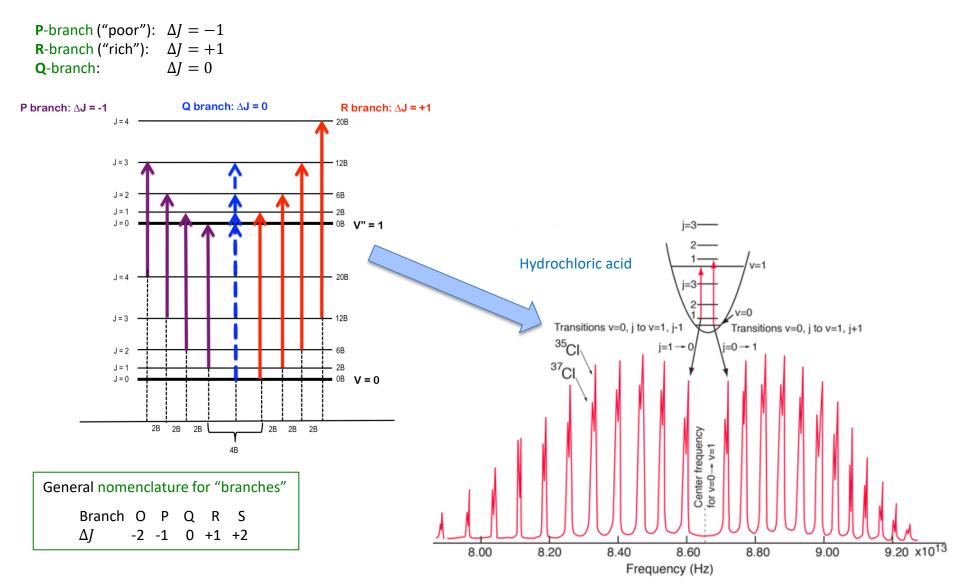



Fermi diad ("doublet") (generally polyad)

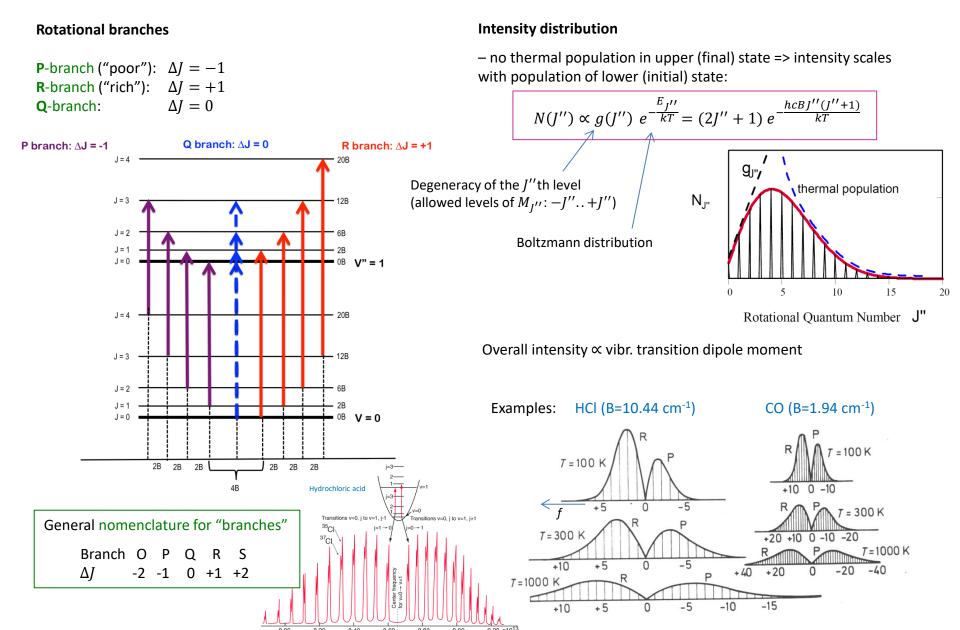

"Classical" example (Fermi): CO2

 v_1 (sym. stretch) $pprox 2v_2$ (bend)



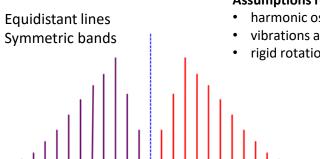

Molecular vibrations and rotations

The simplest case: diatomic molecule, stretching vibration (harmonic oscillator), rigid rotor (no centrifugal distortion) Vibrations and rotations assumed independent (Born-Oppenheimer approximation)



Molecular vibrations and rotations

Rotational branches



Molecular vibrations and rotations

Molecular vibrations and rotations

Ideal spectrum

Assumptions recall:

- harmonic oscillator
- vibrations and rotations independent
- rigid rotation

Total nuclear energy of the combined rotation-vibration motion $E(v,J) = hv_0\left(v + \frac{1}{2}\right) + BJ(J+1)$ vih rot

Rotational-Vibrational Coupling

rotačně-vibrační vazba

- Moment of inertia depends on bond length, which changes by vibration => rotational constant (B) changes

 \rightarrow correction via rotational-vibrational coupling constant (α_e)

Centrifugal distortion odstředivá distorze

- Molecular bond length change due to centrifugal force

$$\rightarrow d \uparrow \Rightarrow I \uparrow \Rightarrow B \downarrow$$

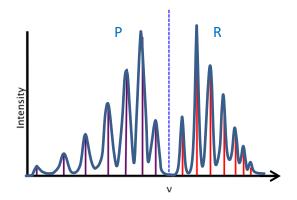
 \rightarrow correction via centrifugal distortion constant (δ_e)

Anharmonic vibrations

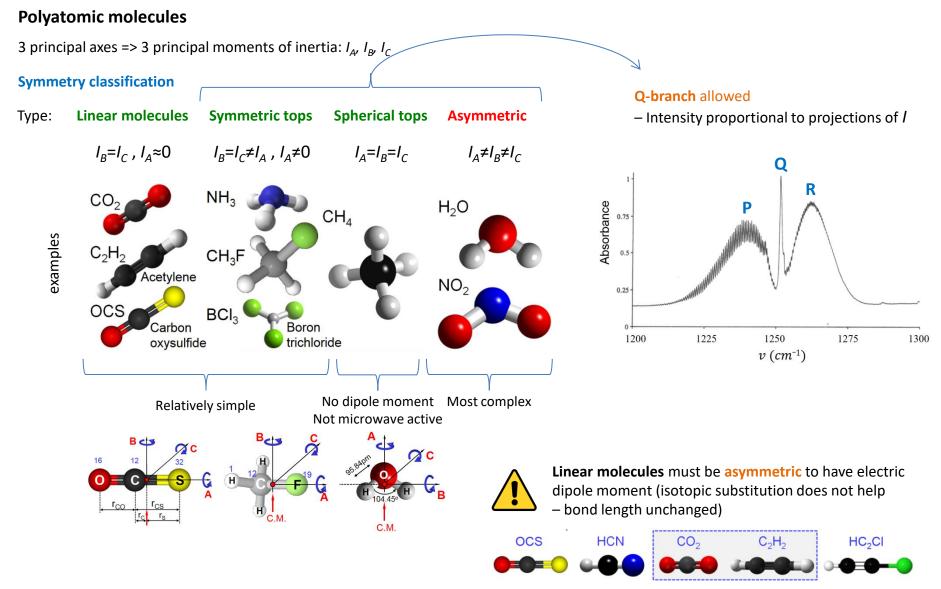
- Affect band center position

Thermal distribution of electrons

=> Dependence on the population of the lower J state


Line broadening

- Natural: Variability of chem. environment, lifetime broadening, Doppler (thermal), collisions, proximity broadening
- Instrument: Aperture size, frequency, grating & path length (DIR), mirror amplitude (FTIR), ...

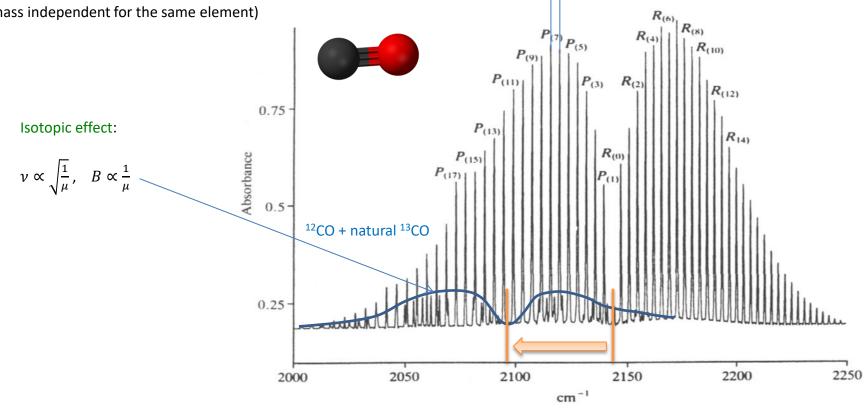

$$\frac{\text{vib}}{E(v,J)} = h\nu_0\left(v + \frac{1}{2}\right) + B_e J(J+1) + \alpha_e\left(v + \frac{1}{2}\right)J(J+1) - \delta_e[J(J+1)]^2$$

Real spectrum

- Spacing higher on P side, lower on R side <
- Asymmetric bands
- P-branch less intensive
- Lines appear as peaks

Molecular vibrations and rotations

Symmetric => no dipole moment

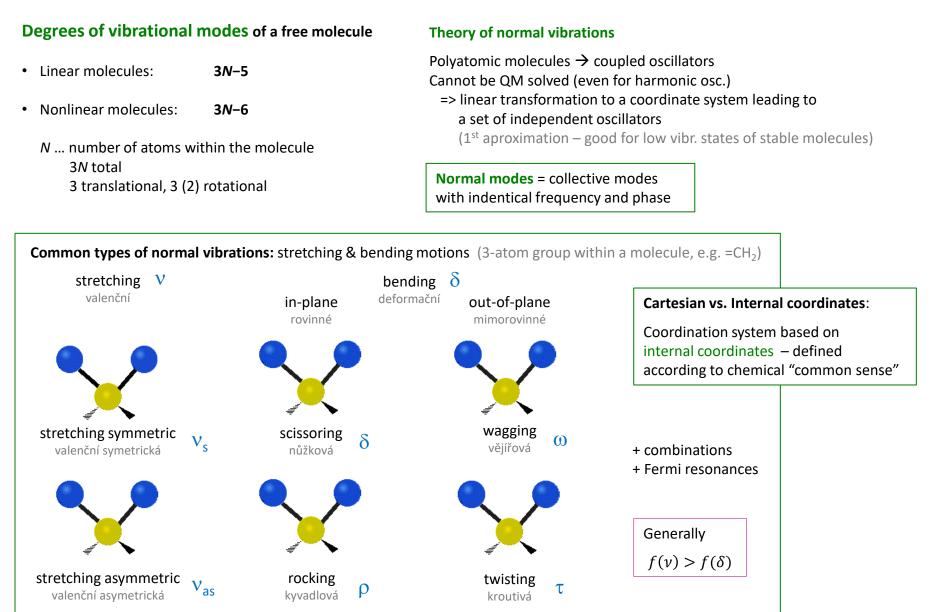

Rotational-vibrational spectrum

Example: Carbon monoxide

- (Almost) uniform spacing => easy to interpret
- $B = \frac{h}{8\pi^2 cI}$, $I = \mu d^2$

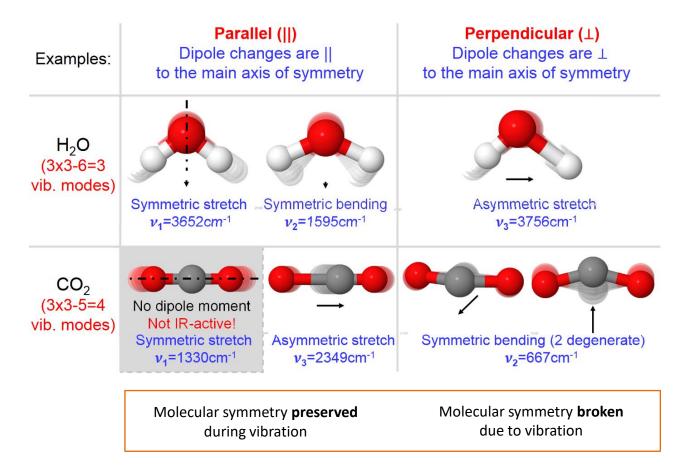
=> straight-forward determination of **bond length** (*d*)

Isotopic substitution → determination of atomic mass
 (*d* is mass independent for the same element)


2B

Theory basics – molecular bonds

Force constants and bond orders - selected compounds


Bond A-B	Force Const. f [N cm ⁻¹]	Bond Order	Compound	Bond A-B	Force Const. f [N cm ⁻¹]	Bond Order	Compound	Bond A-B	Force Const. f [N cm ⁻¹]	Bond Order	Compound	Bond A-B	Force Const. f [N cm ⁻¹]	Bond Order	Compound
H-H	5.14	0.77	H ₂	H-O	7.40	1.0	HO [_]	C-S	3.3	1.0	S(CH ₃) ₂	0-0	6.18	0.89	0 ²
Li-Li	1.24	1.2	Li ₂	H-F	8.85	1.1	HF	C-CI	3.12	0.93	CCI4	0-0	5.70	0.83	0,
B-B	3.58	1.2	B ₂	H-AI	1.76	0.60	AIH_	C-Ni	2.91	1.2	Ni₄CO	O-Na	~3.2	~1.1	Na-OH
C-C	16.5	3.2	НССН	H-SI	2.98	0.84	SiH	C-Ni	1.43	0.68	NiCO	O-Mg	3.5	1.1	MgO
N-N	22.42	3.2	N ₂	H-P	3.11	0.82	PH ₃	C-Se	5.94	1.8	CSe ₂	O-AI	5.66	1.5	AIO
0-0	11.41	1.4	0,	H-S	4.29	1.0	H ₂ S	C-Br	2.42	0.86	CBr ₄	O-AI	3.8	1.1	AI(OH)4
F-F	4.45	0.58	F ₂	H-CI	4.81	1.0	HCI	C-Rh	2.4	1.2	(Rh(CN) ₆) ³⁻	O-Si	9.25	2.1	SiO
Na-Na	0.17	0.24	Na ₂	H-Ge	2.81	0.82	GeH4	C-Ag	2.0	0.99	(Ag(CN) ₂) ⁻	O-Si	4.75	1.2	SiO4
Si-Si	4.65	2.0	Si,	H-As	2.85	0.81	AsH ₃	C-I	1.69	0.79	Cl ₄	O-P	9.41	2.0	PO
Si-Si	~1.7	~0.9	Si,He	H-Se	3.51	0.93	H,Se	N-H	7.05	1.1	NH ₃	O-P	6.16	1.4	PO4
P-P	5.56	2.1	P ₂	H-Br	3.84	0.98	HBr	N-B	7.2	1.6	BN ₂	O-S	10.01	2.0	SO ₂
P-P	2.07	0.95	P ₄	H-Sn	2.03	0.76	SnH ₄	N-C	18.07	3.0	HCN	O-CI	4.26	1.0	
S-S	4.96	1.7	S ₂	H-Sb	2.09	0.77	SbH ₃	N-N	22.42	3.2	N ₂	O-CI	3.30	0.82	CIO-
S-S	2.5	0.99	S ₈	H-I	2.92	0.97	HI	N-N	16.01	2.4	N-NNH	O-Ca	2.85	1.2	CaO
CI-CI	3.24	1.1	CI,	C-H	5.50	1.0	CH ₄	N-N	13.15	2.0	N-N-N-	O-Ti	7.19	2.4	TiO
Ni-Ni	0.11	0.2	Ni solid	С-В	3.82	1.1	B(CH ₂) ₃	N-0	25.07	3.1	N-O+	0-V	7.36	2.3	VO
As-As	3.91	1.8	As ₂	C-C	16.5	3.2	НССН	N-O	17.17	2.3	NO ₂ *	O-Cr	5.82	1.9	CrO
Se-Se	3.61	1.6	⁸⁰ Se ₂	C-C	9.15	1.9	H ₂ CCH ₂	N-O	15.49	2.1	NO	O-Mn	5.16	1.6	MnO
Br-Br	2.36	1.1	Br ₂	C-C	7.6	1.7	C _e H _e	N-O	15.18	2.0	ONCI	O-Fe	5.67	1.7	FeO
Rb-Rb	0.08	0.2	Rb ₂	C-C	4.4	1.1	H ₃ CCH ₃	N-O	11.78	1.7	NNO	O-Cu	2.97	0.93	CuO
Cd-Cd	1.11	1.0	Cd2+	C-N	18.07	3.0	HCN	N-F	4.16	0.66	NF ₃	O-Ge	7.53	1.8	⁷⁴ GeO
Sb-Sb	2.61	1.9	Sb ₂	C-N	11.84	2.1	CN2 ²	N-Si	3.8	1.1	((CH ₃) ₃ Si) ₂ NH	O-Se	6.45	1.5	SeO
Te-Te I-I	2.37	1.7 1.2	Te ₂	C-N C-O	6.54 18.56	1.3 2.8	NNCH ₂ CO	N-S	12.54	2.5	NSF ₃	O-Mo	3.05	1.2	Ba ₂ CaMoO ₆ (solid)
Hg-Hg	1.69	1.5	Hg ₂ ²⁺	C-0	15.61	2.4	CO.	N-S	8.3	1.9	HNSO	O-Ru	6.70	2.2	RuO,
Pb-Pb	4.02	3	Pb.	C-0	12.76	2.4		N-S	3.1	0.87	H _a N-SO _a	O-Ag	2.00	0.79	AgO
Bi-Bi	1.84	1.6	Bi ₂	C-0	7.86	1.3	CO ₃ ²	O-Li	1.58	0.66	LiO	O-Sn	5.53	1.7	SnO
H-B	2.75	0.68	BH ₂	C-0	5.1	0.96	O(CH ₂) ₂	O-Be	7.51	1.8	BeO	O-Te	5.31	1.6	TeO
H-C	5.50	1.0	CH,	C-F	6.98	1.1	CF.	O-B	13.66	2.5	BO	О-Ва	3.79	1.8	BaO
H-N	7.05	1.0	NH _a	C-P	8.95	2.4	HCP	O-B	6.35	1.3	BO ₃ ³	O-Ce	6.33	2.6	CeO
H-0	8.45	1.1	H ₂ O	C-S	7.67	2.4	CS	0-0	16.59	2.0	O ₂ ⁺	O-Pr	5.68	2.4	PrO
	0.40	1.1	1.120	100	,	2.0		0-0	11.41	1.4	0 ₂	O-Nd	3.5	1.6	NdAc ₃ ·H ₂ O (polymer)

Vibrational modes of polyatomic molecules

Vibrational modes

Parallel and perpendicular modes of symmetrical molecules

Important for rotation-vibrational spectroscopy – different selection rules:

 $\Delta J = \pm 1$

 $\Delta J = 0 \text{ or } \pm 1$

Group theory and vibrational spectroscopy

Group theory \rightarrow symmetry operations is a finite group containing:

Symmetry elements Prvky symetrie

- basic geometrical entities
- *Point* inversion center ٠
- *Line* Rotation axis
- *Plane* Mirror plane

Group relationships

uzavřenost grupy

- Closure: $A \in G \& B \in G \Rightarrow A B \in G$
- Associativity: (AB)C=A(BC)
- Identity: ∃ E: EA=AE=A ٠
- $\forall A \exists A^{-1}: AA^{-1} = A^{-1}A = E$ Inverses:

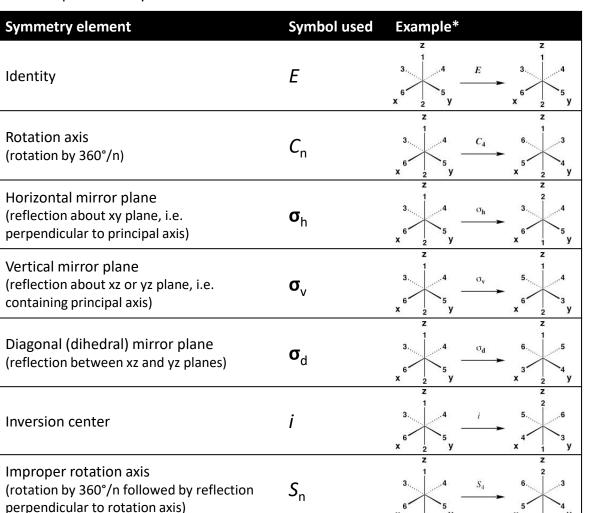
Some symmetry operation relationships

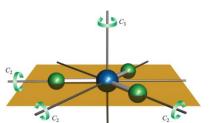
$$C_n^{\ n} = E$$

$$\sigma^2 = E$$

$$\sigma^{-1} = \sigma$$

$$\sigma^k = \sigma \pmod{k} \text{ or } E \pmod{k}$$


$$i^k = i \pmod{k} \text{ or } E (\text{even } k)$$

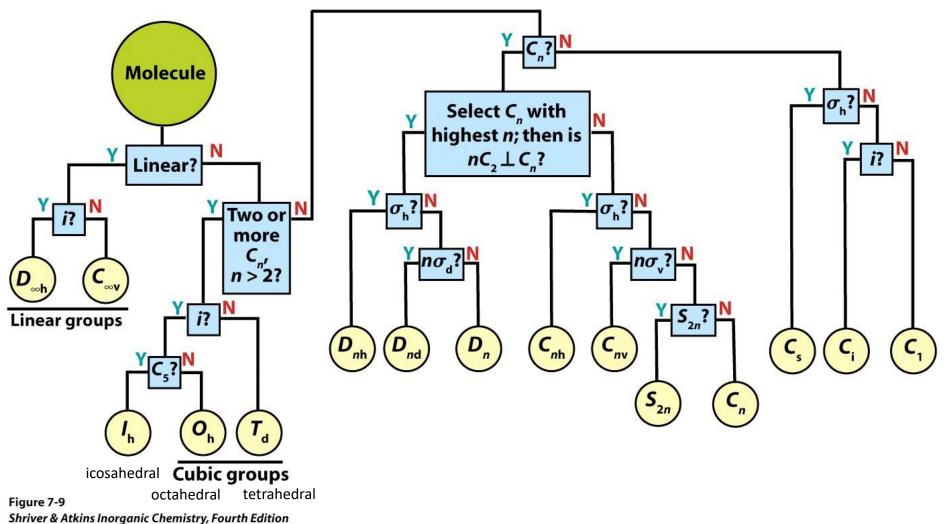

$$S_n = C_n \sigma_h = \sigma_h C_n \implies S_1 = \sigma_h , S_2 = i$$

nevlastní rotace (rotačně-reflexní operace)

Symmetry operations Operace symetrie

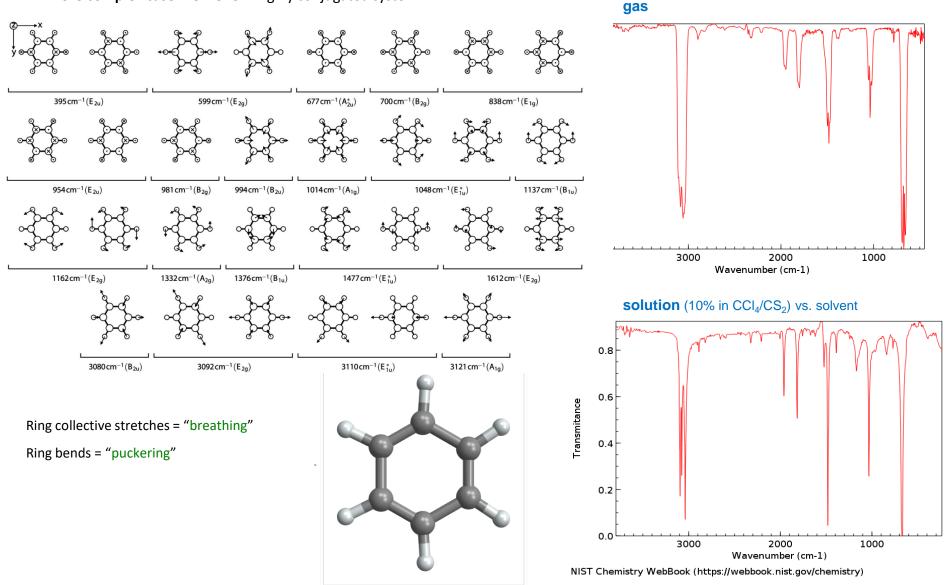
- geometrical transformations
- can be represented by matrixes

Principal axis = axis with the largest n of C_n


х

y

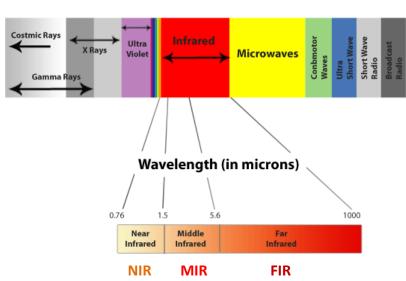
Appendix


Group theory and vibrational spectroscopy

Point group determination chart

© 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

More complex case: Benzene - highly conjugated system



Infrared vibrational spectroscopy Infračervená vibrační spektroskopie

C ALPH

- Method overview and principle
- Instrumentation
- Fourier Transform IR spectroscopy
- Interpretation of IR spectra

Basics and classification

Wavelength [µm]	0.75	3	50	1000	
Wavenumber [cm ⁻¹]	13333	3333	200	10	
Frequency [THz]	400	100	6	0.3	
Photon Energy [meV]	1653	413	25	1.24	

Division scheme of IR regions varies slightly – ISO, CIE, astronomy, telecommunications, ...

Methods

Transmission

- transparent samples

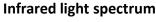
Reflection

- Specular reflection spekulární reflexe
 - low incidence angle (~20-60°) specular refl. on highly-refl. sample
 - bulk optical properties, thin layers
- Reflection-absorption (RAIRS / IRAS)

 grazing incidence reflection on highly-refl. sample (typ. metal)
 thin films, adsorbates, ...
- Diffusive reflection (DRIFTS) difúzní reflexe – diffusely scattered IR collected and refocused
- typically for powders or rough surfaces
- Attenuated Total Reflectance (ATR) zeslabená úplná reflexe or Multiple Internal Reflection (MIR)
 - total internal reflection in IR transmitting sample
 - absorption on surface-adsorbed species

Light absorption quantification

Transmittance


$$T = I/I_0$$

Absorbance

$$A = \log I_0 / I$$
$$A = -\log T$$

Reflectance

Refl.→Abs.: Kramers-Kronig transformation

Instrumentation

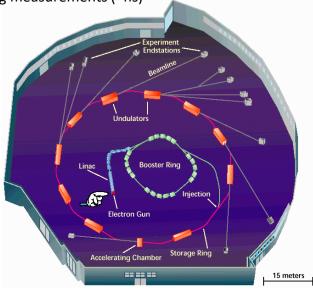
Light (irradiation) sources

- Typically an ellectrically heated inert solid \rightarrow continuous radiation (black body)
- High stability and intensity required
- Polarization modulation possible
- Nernst or Glower filament lamp
- Globar (SiC)
- Ni-Cr (Nichrome) or Kanthal wire coils
- Rh wire
- CO₂ laser w/ tuning

Sampling devices

- Different for solids, liquids, gases
- Solvents, mulls (oil paste) or salt (KBr, NaCl, ...) buffers used

Monochromator or frequency modulator


- 1) Dispersion + monochromator \rightarrow Dispersive IR
- 2) Signal modulation and collection in time domain \rightarrow Fourier transform IR

Transducers or detectors

- Can be cooled for lower noise and higher stability
- 1) Thermal transducers: Thermocouples and bolometers
- 2) Pyroelectric transducers
- 3) Photoconducting transducers

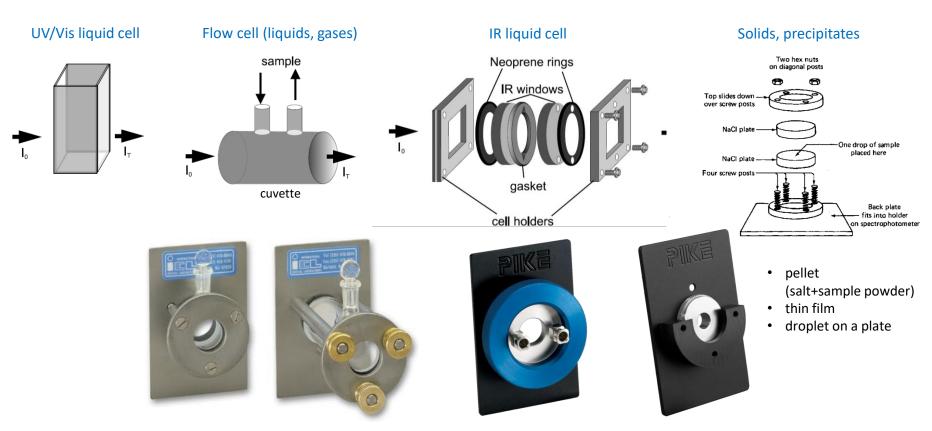
Special case: Synchrotron source

- High brightness smaller samples, better signal-to-noise
- Essentially a point source:
 Can be focussed (diffraction-limited size) → Microscopy
- Pulsed source (light from electron bunches)
 → fast timing measurements (~ns)

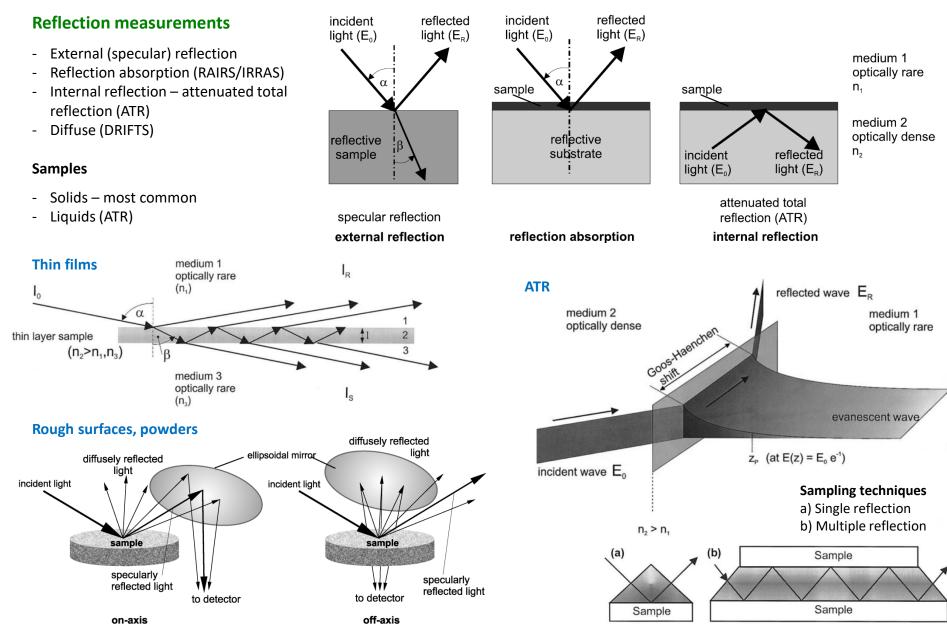
Signal processing and recording device

Vibrational spectroscopy: Instrumentation

Vibrational spectroscopy

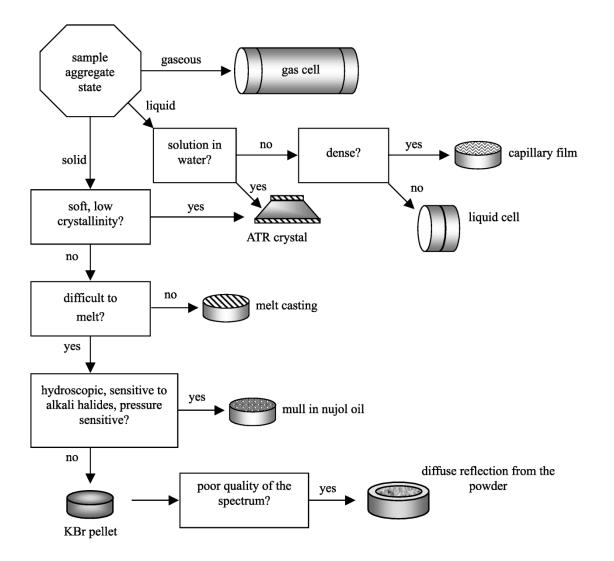

Instrumentation – samples

Transmission measurements

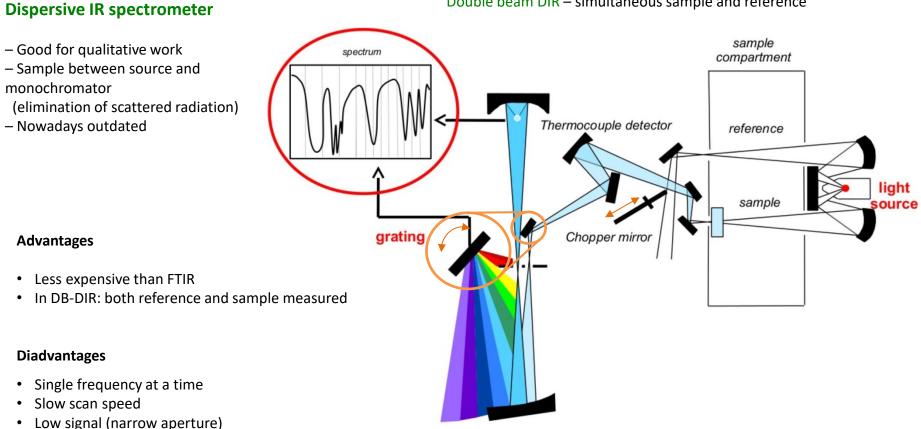

- KBr or CsI pellet
- Cuvette with KBr or NaCl windows (ZnSe, Si, AgCl, ... for water) liquids, gases
- Thin film or precipitate on KBr or NaCl window
- Suspension in Nujol (parrafine oil) or Fluorolube (fluorinated hydrocarbon) powders

Samples

- solid, liquid, gas



Instrumentation – samples



Instrumentation – samples

IR sampling techniques – decision chart for "bulk" samples

Instrumentation – Dispersive IR spectrometry

Double beam DIR - simultaneous sample and reference

Non-dispersive IR spectrometer

- The same construction except the source is intrinsically monochromatic and tunable

Instrumentation – Fourier Transform IR spectroscopy

IR spectroscopy with Fourier transform (FTIR)

- Fast measurements (sub-second spectra possible)
- Better sensitivity and S/N ratio
- Better frequency resolution and reproducibility
- Better reliability (less moving parts)

Main advantages (from dispersive sp.):

- Jacquinot (throughput) adv. Výhoda světelnosti

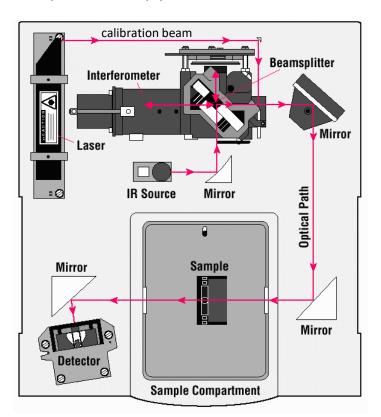
 wider beam spot size: no narrow slits
- Felgett (multiplex) adv. Multiplexová výhoda

 response at all wavelengths measured simultaneously
- Connes^F (precision) adv. Výhoda jednoduché kalibrace

 automatic internal calibration: HeNe laser (<0.01 cm⁻¹ accuracy)

Time-resolved IR spectroscopy

(measurement modes for fast processes)


Rapid Scan technique

- time-resolved spectroscopy of non-reproducible experiments (e.g. many chemical reactions)
- Interferometer mirror moves very fast
- More scans can be averaged
- Low resolution (short path)

Up to ~100 spectra/s possible!

Step Scan technique

- monitoring of very fast reproducible events (transients)
- Interferometer mirror consecutively steps to separate interferogram points and the experiment is restarted again
- High time resolution
- Very long path possible => high spectral resolution
- Low signals => synchronous detection (lock-in)

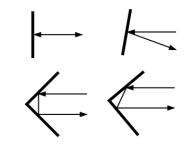
Applications

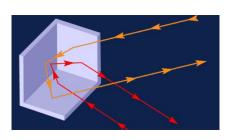
- Electron transfer studies
- Gas-phase kinetics
- Spectroscopy of radical intermediates
- Dynamics of combustion processes
- Photolysis experiments
- Pump–probe experiments
- Time-resolved emission spectroscopy (photoluminescence, fluorescence, pulsed laser emission, ...)

Instrumentation – Fourier Transform IR spectroscopy

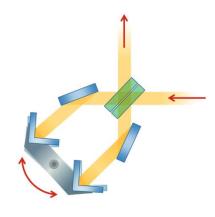
FTIR interferometer

- Optical device to produce interference of 2 light beams with variable phase difference

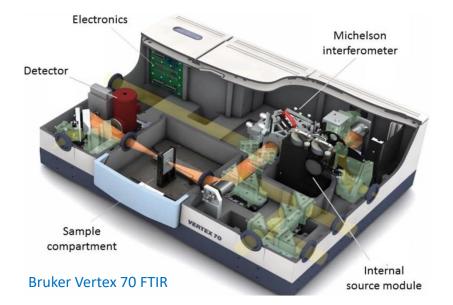

Standard Michelson interferometer


- Flat mirrors
- Tilt alignment needed e.g. by piezo transducers

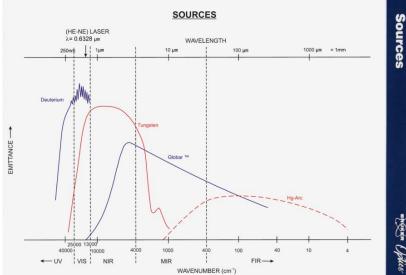
movable mirror lase fixed mirror half-transparent mirror ((((((a->))))))

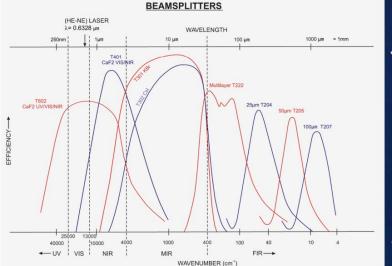

Cube corner mirror interferometer

- Dual retroreflecting cube corner mirrors koutový odražeč
- Tilt invariant => More stable



RockSolid[™] interferometer (Bruker)





Instrumentation – Fourier Transform IR spectroscopy

Fourier Transform IR spectroscopy – Theory

Detected intensity of 2 monochromatic plane waves with the same frequency:

$$I = \left|\vec{E}\right|^2 = \left|\vec{E_1}\right|^2 + \left|\vec{E_2}\right|^2 + 2\left|\vec{E_1}\right| \cdot \left|\vec{E_2}\right| \cos \Theta$$

Normal incidence, $\Theta = kx$, $k = 2\pi/\lambda$, x ... pathlength difference

 $\frac{1}{2} |\overrightarrow{E_1}|^2 = \frac{1}{2} |\overrightarrow{E_2}|^2 \equiv G$ $\Rightarrow I(x) = G[1 + \cos(kx)]$

For non-monochromatic light: Spectral function G(k)

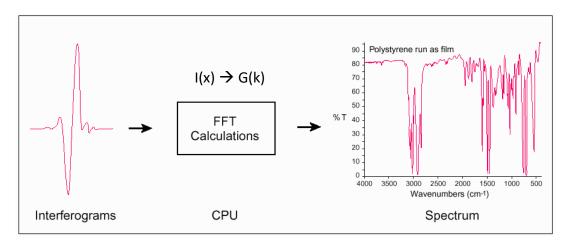
$$I(x) = \int_0^\infty [1 + \cos(kx)]G(k)dk$$

=
$$\int_0^\infty G(k)dk + \int_0^\infty G(k)\frac{1}{2}(e^{ikx} + e^{-ikx})dk$$

=
$$\frac{1}{2}I(0) + \frac{1}{2}\int_{-\infty}^\infty G(k)e^{ikx}dk$$

$$W(x) \equiv \frac{2I(x) - I(0)}{\sqrt{2\pi}} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(k) e^{ikx} dk$$

 \Rightarrow *G* is a **Fourier transform** of *W*

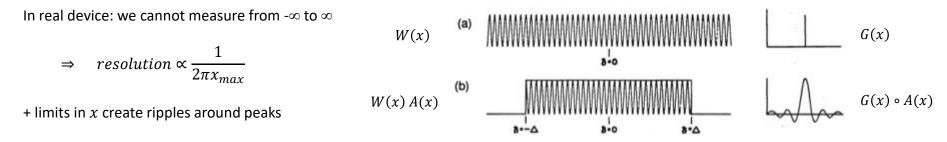

$$G(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} W(x) e^{-ikx} dx$$

Short reminder:

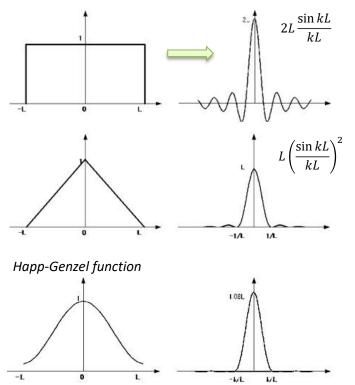
$$e^{ikx} = \cos(kx) + i\sin(kx)$$
 Euler's formula

$$\cos(kx) = \frac{1}{2} (e^{ikx} + e^{-ikx})$$

$$\sin(kx) = \frac{1}{2i} (e^{ikx} - e^{-ikx})$$


 $(1/\sqrt{2\pi} \text{ constant from angular freq. and } k \text{ relation \& symmetry of direct and inversion Fourier})$

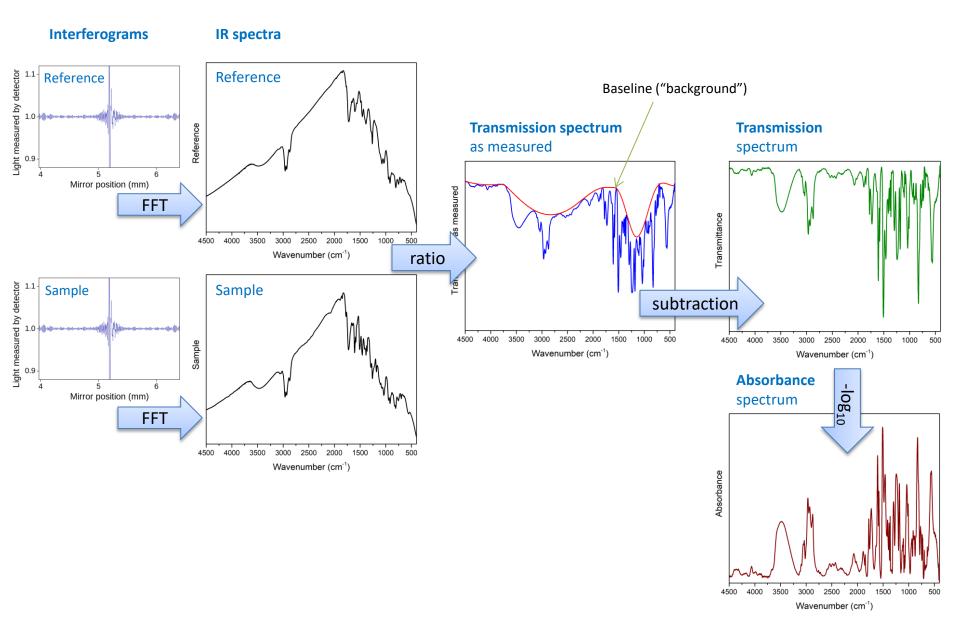
Fourier Transform IR spectroscopy – Theory



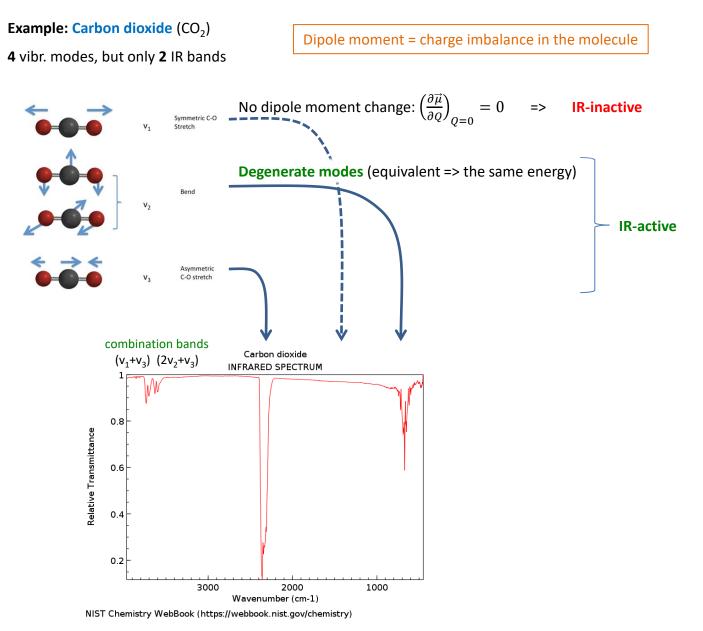
Wavelength

Fourier Transform IR spectroscopy – Theory

Apodization function


Apodization	Function ($ x \le L$)	Fourier Transform Image	FWHM	Resolution	Peak Height	Ripple
Box-car	1	$2L\frac{\sin 2\pi \nu L}{2\pi \nu L}$	0.60/L	0.68/L	2.0L	-0.215
Triangular	$1-\frac{ x }{L}$	$L\left(\frac{\sin\pi\nu L}{\pi\nu L}\right)^2$	0.88/L	0.88/L	1.0L	+0.045
Happ-Genzel	$0.54 + 0.46 \cos\left(\frac{\pi x}{L}\right)$	$\left\{\frac{0.54}{\pi\nu} + \frac{0.46 \times 4\pi u^2}{\pi^2 - (2\pi u^2)^2}\right\} \sin(2\pi u^2)$	0.91/L	0.89/L	1.08L	-0.006
Cosine (Cos)	$\cos\left(\frac{\pi x}{2L}\right)$	$\frac{\pi L}{(\pi/2)^2 - (2\pi \nu L)^2} \cos(2\pi \nu L)$	0.82/L	0.85/L	1.27L	-0.067
Lorenz	$\exp\left(-\frac{ x }{L}\right)$	$\frac{2L}{1+(2\pi\nu L)^2} \times \\ \left[+e^{-1}\{2\pi\nu L \sin(2\pi\nu L)-\cos(2\pi\nu L)\}\right]$	0.71/L	0.73/L	1.26L	-0.055
Gaussian	$\exp\left\{-\left(\frac{2.24x}{L}\right)^2\right\}$	$\frac{L\sqrt{\pi}}{2.24}\exp\left\{-\left(\frac{\pi dL}{2.24}\right)^2\right\}$	1.17/L	1.16/L	0.79L	-0.000

Phase correction


FT generally yields complex spectrum (interferogram asymmetry): $G_R(x) + iG_I(x)$

→ Can be removed by calculation of square root of power spectrum: $G(x) G^*(x)$ (Mertz method)

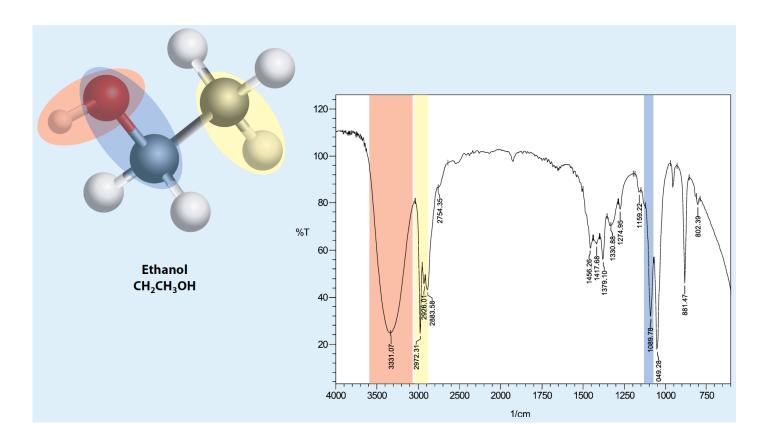
Fourier Transform IR spectroscopy – Workflow

IR active vibrational modes

Interpretation of spectra

Interpretation of IR spectra - 2 interconnected tasks

- 1. Assignment of peaks and bands
- 2. Characterization of vibrations with respect to molecular geometry


Not all peaks are diagnostically valuable

Group frequency concept

Atomic group vibrates independently of other groups (not exactly valid: differences treated as relatively small shifts)

Not applicable to coupled vibrations

Interpretation of spectra

Interpretation of IR spectra - 2 interconnected tasks

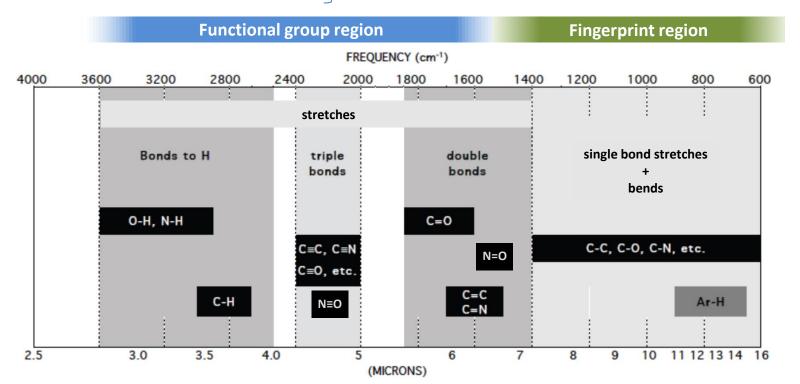
- 1. Assignment of peaks and bands
- 2. Characterization of vibrations with respect to molecular geometry

Not all peaks are diagnostically valuable

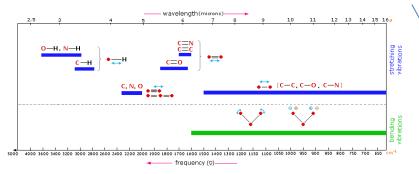
Stretching vibration regions

- 3700-2500 cm⁻¹ Single bonds to H
- 2300-2000 cm⁻¹ Triple bonds
- 1900-1500 cm⁻¹ Double bond
- 1400-650 cm⁻¹ Single bonds (other than H)
- → Functional groups an H) → "Fingerprint region"

Characteristic peak/band assignments


Group frequency concept

Atomic group vibrates independently of other groups (not exactly valid: differences treated as relatively small shifts)


Not applicable to coupled vibrations

Bond strength generally more important than mass (unless very diff. as with H)

Interpretation of spectra

Exact band position depends on the **bond environment** (type of molecule)

Single Bonds to Hydrogen

Bond	Wavenumber/cm ⁻¹	Notes
С–Н	3000 - 2850	Saturated alkanes, limited value as most organic compounds contain C–H
=С-Н	3100 - 3000	Unsaturated alkene or aromatic
≡С-Н	3300	Terminal Alkyne
О=С-Н	2800 and 2700	Aldehyde, two weak peaks
O–H	3400 - 3000	Alcohols and Phenols. If hydrogen bonding present peak will be broad 3000–2500 (<i>e.g.</i>
O-H (free)	~3600	carboxylic acids)
N-H	3450 - 3100	Amines: Primary - several peaks, Secondary - one peak, tertiary - no peaks

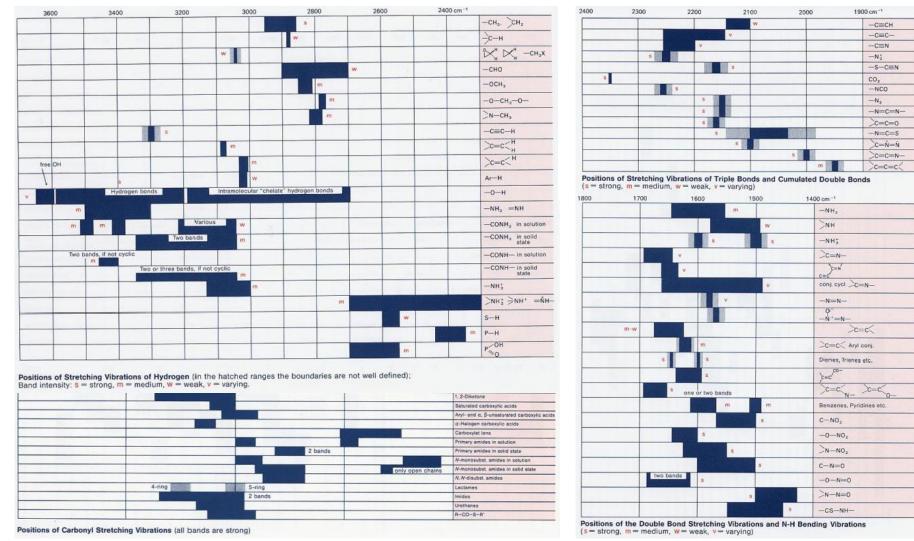
Single Bonds (not to Hydrogen)

Bond	Wavenumber/cm ⁻¹	Notes
C–C	Variable	No diagnostic value
CO, CN	1400 - 1000	Difficult to assign
C–Cl	800 - 700	Difficult to interpret
C–Br, C–I	Below 650	Often out of range of instrumentation

Double Bonds

Bond	Wavenumber/cm ⁻¹	Notes
C=0	1840 - 1800 & 1780 - 1740	Anhydrides
C=O	1815 - 1760	Acyl halides
C=O	1750 - 1715	Esters
C=O	1740 - 1680	Aldehydes
C=O	1725 – 1665	Ketones
C=O	1720 - 1670	Carboxylic acids
C=0	1690 - 1630	Amides
C=C	1675 - 1600	Often weak
C=N	1690 - 1630	Often difficult to assign
N=O	1560 - 1510 & 1370 - 1330	Nitro compounds

Triple Bonds


Bond	Wavenumber/cm ⁻¹	Notes
C≡C	2260 - 2120	Alkynes, bands are weak
C≡N	2260 - 2220	Nitriles

Bending Vibrations

Bond	Wavenumber/cm ⁻¹	Notes
R–N–H	1650 - 1500	Take care not to confuse N–H bend with the C=O stretch in amides
R–С–Н	1480 - 1350	Saturated alkanes and alkyl groups
R –С–Н	1000 - 680	Unsaturated alkenes and aromatics

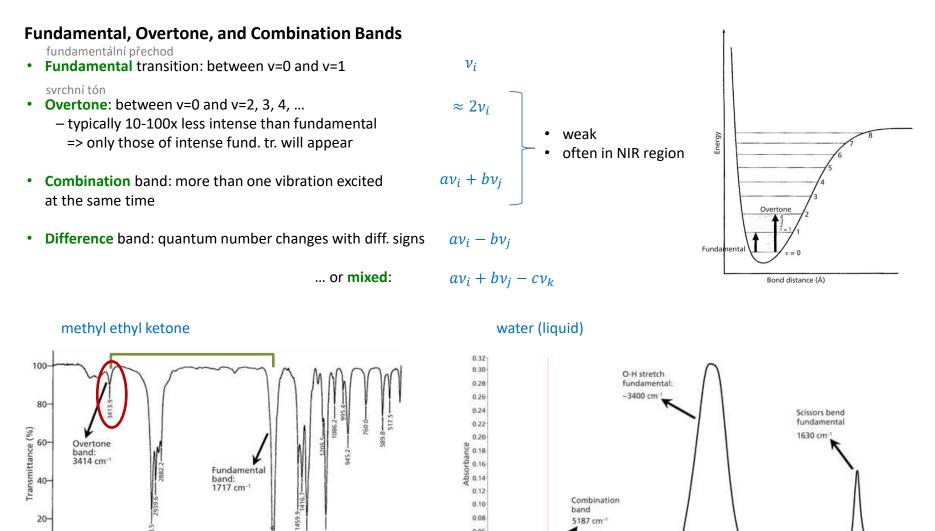
Hard to make specific peak-group assignment

Interpretation of spectra

Modern techniques:

- Use of spectral libraries and recognition software (rule-based expert systems, fuzzy logic, artificial neuron networks ...)
- Theoretical simulation of IR spectra

Vibrational spectroscopy: IR spectroscopy


0-

4000

3500

Infrared vibrational spectroscopy

Interpretation of spectra

0.06

0.04

0.02 -0.00

5880

4000

Wavenumber (cm⁻¹)

3000

2000

1439

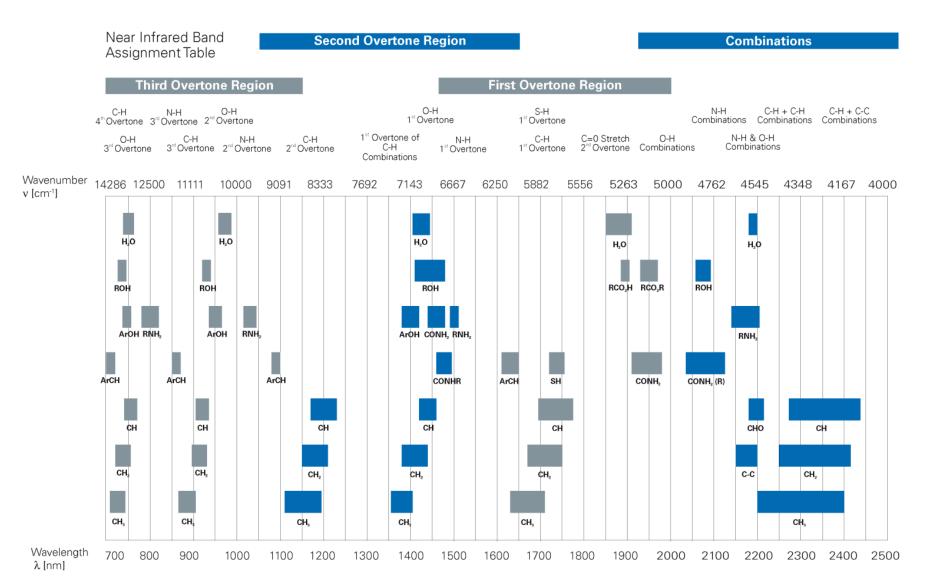
366

1000

500

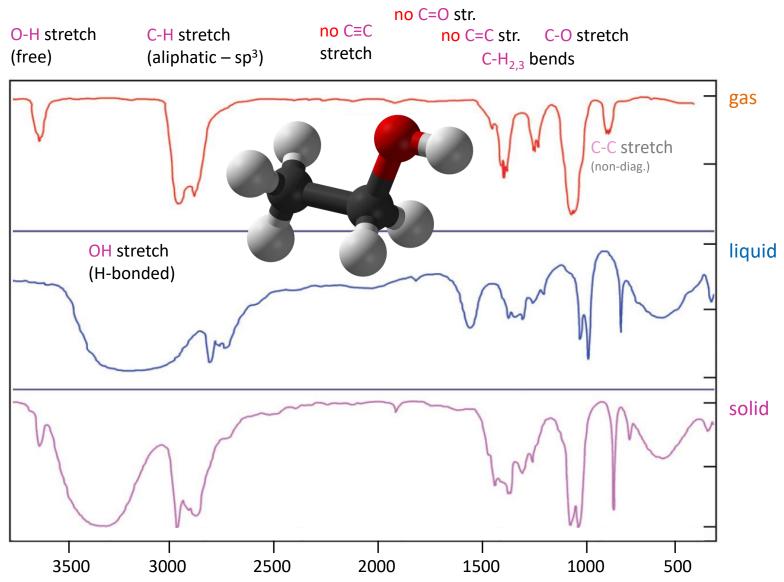
1500

2500

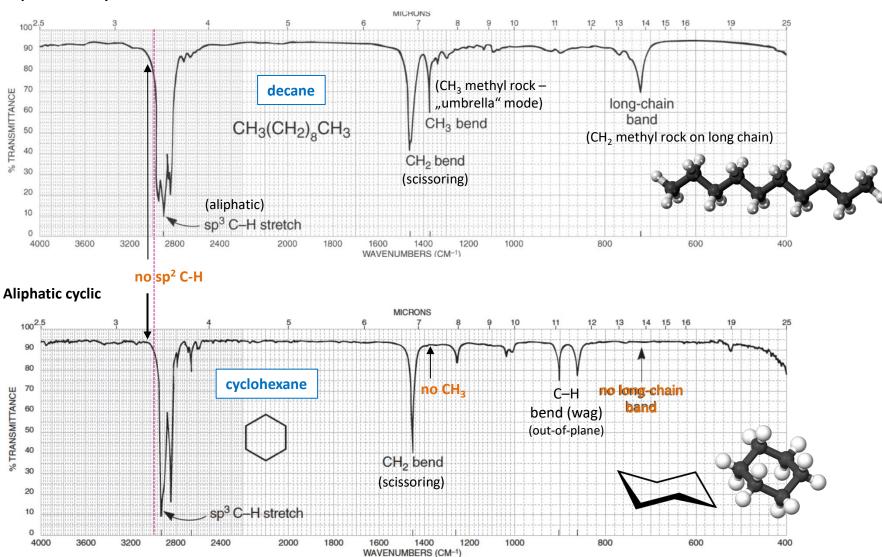

Wavenumber (cm⁻¹)

3000

2000

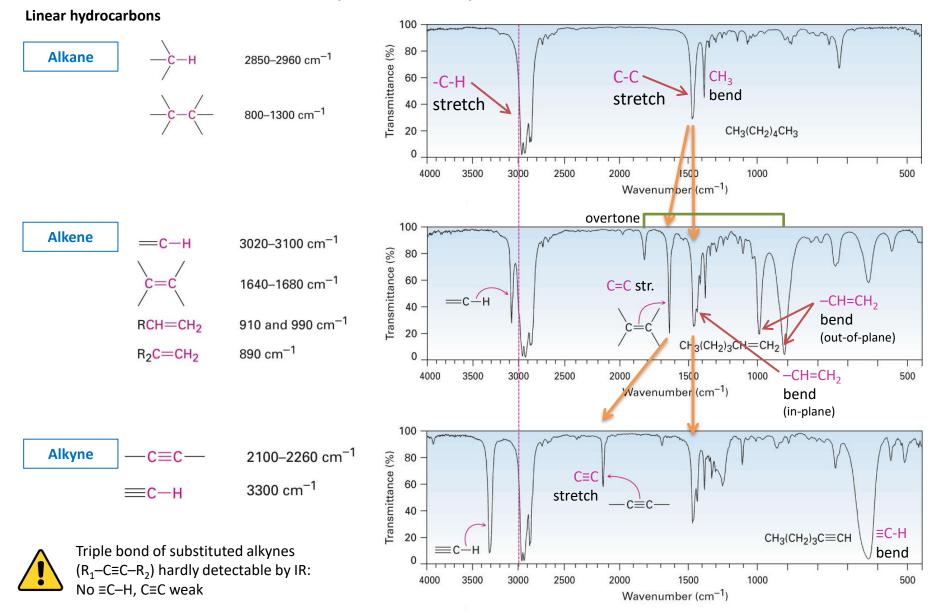

Interpretation of spectra

Overtones and Near infrared

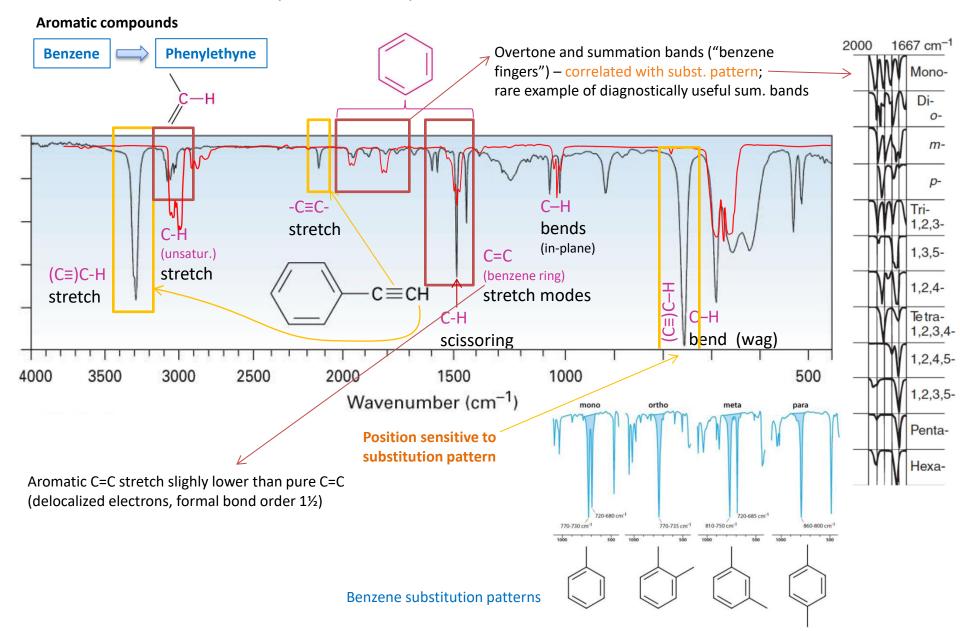


Interpretation of spectra – functional groups

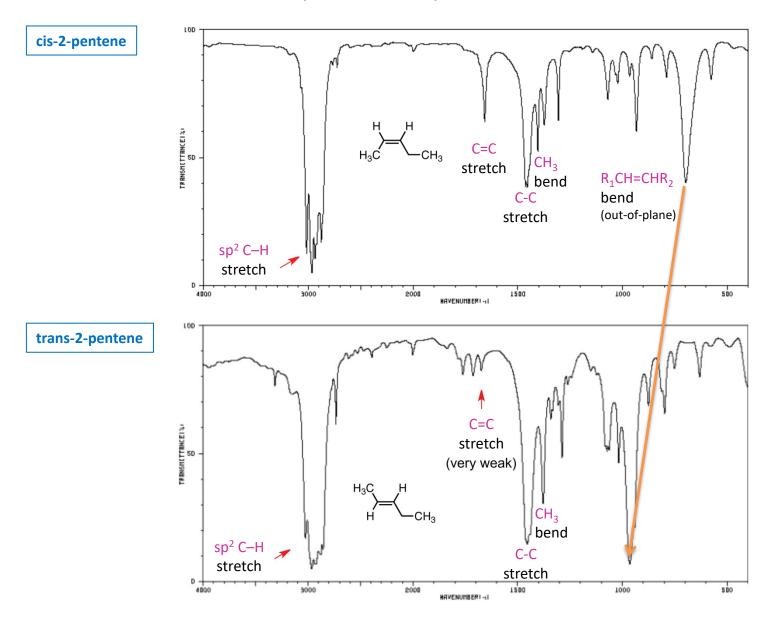
Basic identification of functional groups



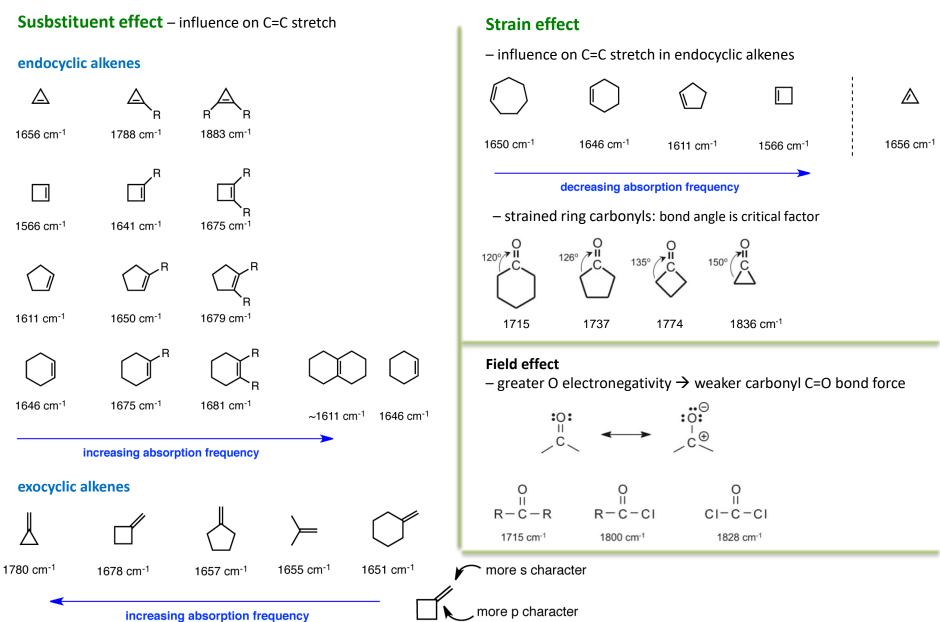
Interpretation of spectra – chain vs. cyclic

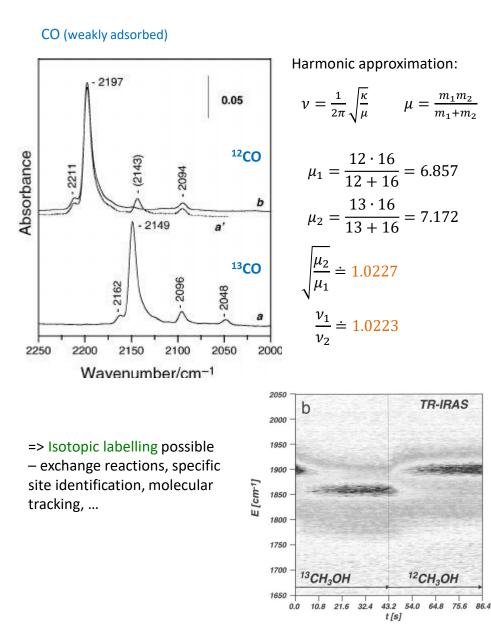


Aliphatic non-cyclic

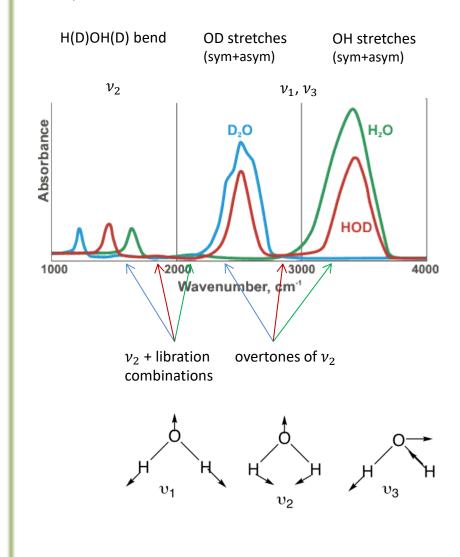

Interpretation of spectra – bond order

Interpretation of spectra – molecular substitutions


Interpretation of spectra – molecular isomers


Vibrational spectroscopy: IR spectroscopy

Infrared vibrational spectroscopy


Interpretation of spectra

Interpretation of spectra – isotopic substitutions

Liquid water

Specular reflection analysis

Transmission / reflection

2000

0.8 ndex

Wavenumber/cm⁻¹

0.4

4000

1000

Kramers-Kronig transform

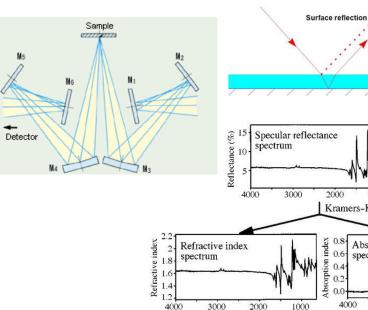
spectrum

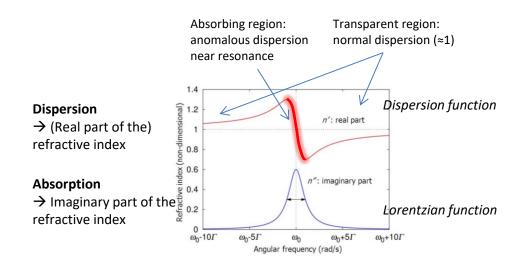
Absorption index

3000

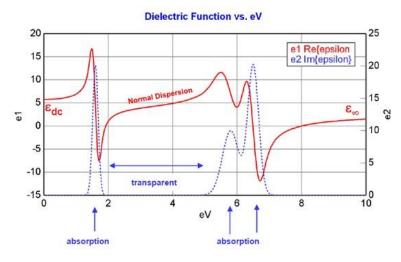
2000

1000


Grazing angle (~70-85°) specular reflection:


- spectra similar to transmission ones
- monolayers, adsorbates, (powders)

Near-normal (~5-30°) specular reflection of dielectrics:


 spectra predominatly a function of refractive index \rightarrow derivative shape of the bands (arising from superposition of extinction (absorption) coefficient and dispersion of refractive index) - conversion to absorbance-like spectra by Kramers-Kronig transformation

- thick transparent solids, thin layers - transmissionreflection (transflectance)

Specular reflection spectrum

Quantitative analysis

Light absorption quantities:

Transmittance

 $T = \frac{I}{I_0}$

Absorbance

$$A = \log I_0 / I_0$$

Specular reflectance

Refl. \rightarrow Abs.: Kramers-Kronig transformation

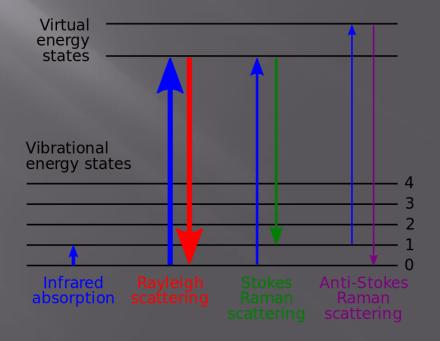
Angle of incidence influences

- Effective pathlength
- Polarized light response
- Projection to bonds (adsorbates)

Peak intensity factors

- Light intensity (freq. dependent)
- Magnitude of dipole moment change: $\left(\frac{\partial \vec{\mu}}{\partial Q}\right)_{Q=0}$
- Bonds orientations (esp. for polarized light)
- Concentration
- Attenuation due to absorption (Beer-Lambert / Beer's law): $A = \varepsilon lc \ (\varepsilon \dots \text{ absorptivity, } l \dots \text{ pathlength, } c \dots \text{ concentration})$ In gas: $A = \varepsilon l \frac{P}{RT}$
- Fermi resonance
- ATR: number of reflections, penetration depth, refractive index, quality of crystal-sample contact, ATR crystal optical properties

Absolute concentrations:


 Calibration against known samples of the same volume/pressure (solutions, gases, ...)

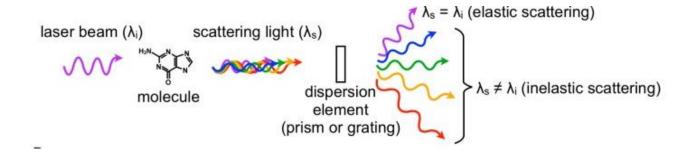
Relative concentrations:

- Normalization against a selected peak

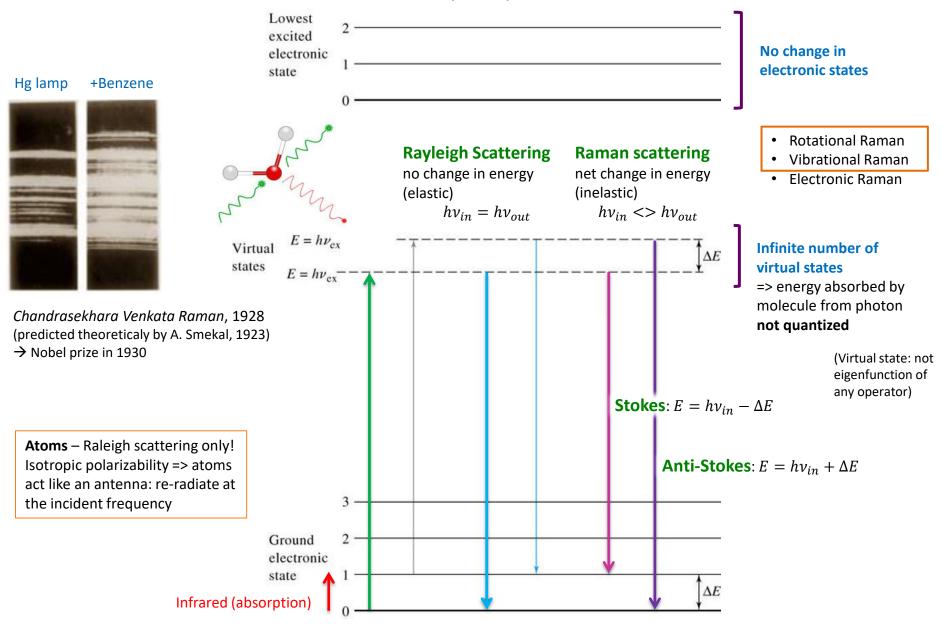
Raman spectroscopy Ramanova spektroskopie

- Method overview and principle
- Instrumentation
- Interpretation of Raman spectra

Vibrational spectroscopy: Raman spectroscopy

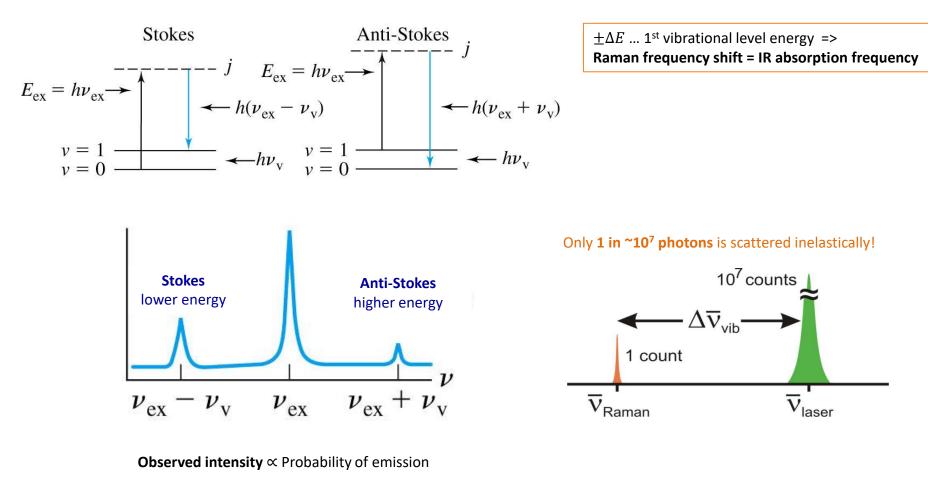

Raman spectroscopy **Basics**

Raman spectroscopy


- Complementary to IR spectroscopy both involve vibrational modes ٠
- Based on frequency shifts due to scattering, exciting (ro-)vibrations ٠

Anisotropic pol	arizability required
$\begin{array}{c} \leftarrow \rightarrow \\ 0 = 0 = 0 \end{array}$	IR inactive Raman active
$\rightarrow \rightarrow$ O = C = O	IR active

IR spectroscopy	Raman spectroscopy	0=0=0	Raman inactive
1-photon process	2-photon process (v_{ex} , v_{scat})		
change in dipole	change in polarizability		
relatively strong	weak (~10 ⁻⁶ –10 ⁻⁷ of IR)		
polarization useful for bond geometry	polarization features can aid iden	tification	
low spatial resolution	good spatial resultion possible		
penetration depth dependence on freq.	essentially freq. independent pen	etration depth	



Basic principle

Raman spectroscopy Basics

Resulting Raman spectrum

Raleigh scattering >> Stokes >> Anti-Stokes

Low wavenumber peaks ($\lesssim 200 \ cm^{-1}$) can overlap with the Rayleigh wings of the excitation line

Vibrational spectroscopy

Linear optical vibr. spectroscopies – basics

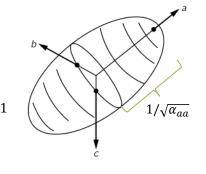
The origin of the polarizability requirement in Raman (classical theory, linear effects only)

$$\begin{split} \vec{\mu} &= \alpha \vec{E} & \vec{\mu} \dots \text{ induced polarization, } \alpha \dots \text{polarizability} \\ |\vec{E}| &= E_0 \cos(\omega_{src} t) \\ \alpha &= \alpha_0 + \frac{d\alpha}{dQ} \cos(\omega_{vibr} t) & \dots \text{ polarizability along } Q \text{-coordinate (vibrational coord.) - linear component only} \\ \Rightarrow & |\vec{\mu}| \equiv \mu = \alpha_0 E_0 \cos(\omega_{src} t) + E_0 \frac{d\alpha}{dQ} \frac{1}{2} \underbrace{(\cos(\omega_{src} t + \omega_{vibr} t) + \cos(\omega_{src} t - \omega_{vibr} t))}_{\text{Rayleigh}}_{\text{sidebands (Raman scattering)}} \\ \begin{pmatrix} \frac{\partial \alpha}{\partial Q} \end{pmatrix}_{Q=0} = 0 & \Rightarrow \ \mu = \alpha_0 E_0 \cos(\omega_{src} t) & - \text{Rayleigh scattering only} \end{split}$$

Polarization energy ellipsoid

Polarization tensor can be measured by measuring the energy required to polarize the crystal/molecule in various directions

For *E*-field with only
$$x$$
- and y -component:


$$\mu = \frac{1}{2} \left[\alpha_{xx} E_x^2 + (\alpha_{xy} + \alpha_{yx}) E_x E_y + \alpha_{yy} E_y^2 \right] , E^2 = E_x^2 + E_y^2$$

$$\alpha_{xy} = \alpha_{yx} \text{ (polariz. tensor is symmetric)} \Rightarrow \mu = \frac{1}{2} \left(\alpha_{xx} E_x^2 + 2\alpha_{xy} E_x E_y + \alpha_{yy} E_y^2 \right)$$

For a given polarization μ_0 we can plot an energy ellipse as a visualization of the polarization tensor

In 3D \rightarrow ellipsoid

With principal axes a, b, c: and with coords normalized to E: $\alpha_{aa}E_a^2 + \alpha_{bb}E_b^2 + \alpha_{cc}E_c^2 = 2\mu_0$ $\alpha_{aa}a^2 + \alpha_{bb}b^2 + \alpha_{cc}c^2 = 1$ or $\frac{a^2}{1/\sqrt{\alpha_{aa}^2}} + \frac{b^2}{1/\sqrt{\alpha_{bb}^2}} + \frac{c^2}{1/\sqrt{\alpha_{cc}^2}} = 1$

⇒ polarization tensor then has only 3 non-zero components: α_{aa} , α_{bb} , α_{cc} and polarizability in the direction of axis *i* is: $1/\sqrt{\alpha_i}$

Raman spectroscopy Basics

$$\mu = \alpha_0 E_0 \cos(2\pi v_{src} t) + \frac{1}{2} E_0 \frac{d\alpha}{dQ} [\cos 2\pi (v_{src} t + v_{vibr} t) + \cos 2\pi (v_{src} t - v_{vibr} t)]$$

 $\frac{d\alpha}{dQ}$... change in polarizability must be $\neq 0$

Classical description: no difference between Stokes and Anti-Stokes intensities

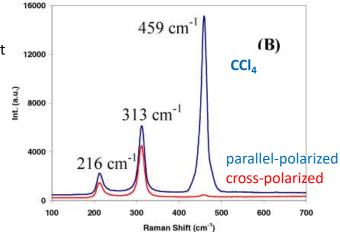
QM => Stokes to Anti-Stokes intensity ratio:

Difference in population of energy levels of vibrational transitions (*Boltzmann distribution*)

$$\frac{N_{Stokes}}{N_{Anti-Stokes}} = \left(\frac{\nu_{src} - \nu_{vibr}}{\nu_{src} + \nu_{vibr}}\right)^4 e^{\frac{h\nu_{vibr}}{kT}}$$

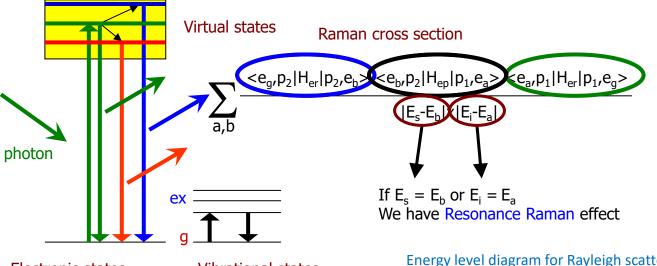
Ex.: v_{vibr} =1440 cm⁻¹ (CH₂ scis.), T=300K, $N_S/N_{AS} \approx 10^3$ v_{vibr} =216 cm⁻¹ (CCl₄ vibr.), T=300K, $N_S/N_{AS} \approx 2.5$

Depolarization ratio


Simple case: direction of the scattered light (polarization direction) = that of incident light => no depolarization

General case: Non-zero component of scattered light perpendicular to incident light (perpendicular component) =>

 $ho = {}^{I_{\perp}}/_{I_{\parallel}}$ I_{\parallel} ... parallel component

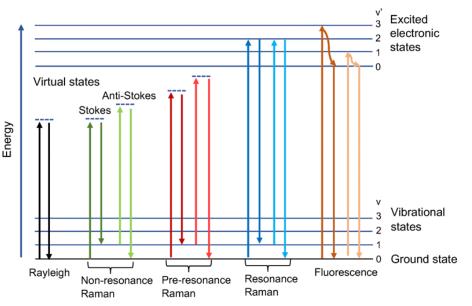

Depends on molecular symmetry: ho=0~ for total symmetric vibr. modes

narmonic	Selection rules $\Delta v = \pm 1$
annarmonic	$\begin{array}{lll} \Delta v = \pm 1 & & \dots \text{ fundamental band} \\ \Delta v = \pm 2 & & \dots 1^{\text{st}} \text{ overtone band} \\ \Delta v = \pm 3 & & \dots 2^{\text{nd}} \text{ overtone band} \\ & \dots \end{array}$

Resonance Raman – Basics

Quantum treatment and energy diagram

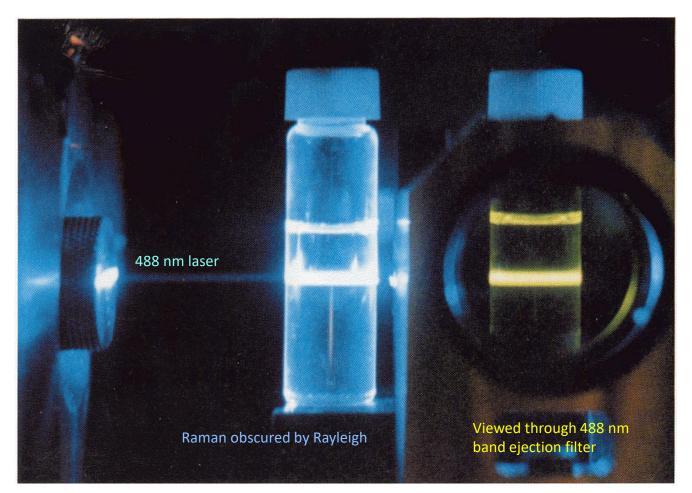
Electronic states


Vibrational states

Energy level diagram for Rayleigh scattering, Raman scattering, and fluorescence

Resonance Raman

wavelength of the incoming light is selected to coincide with an *electronic* transition of the molecule or material (=> excitation to higher electronic levels)


- vibr. modes of el. excited states show larger polarizability
- 10-10⁵ intensity enhancement
- selective: Only few vibr. modes contribute to resonance (such molecular parts are called *chromophores*)
 => spectrum usually greatly simplified
- Drawback: Greatly increased probability of fluorescence

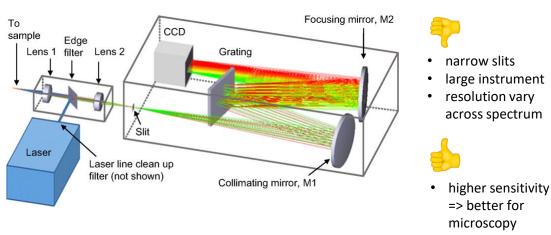
Vibrational spectroscopy: Raman spectroscopy

Raman spectroscopy Basics

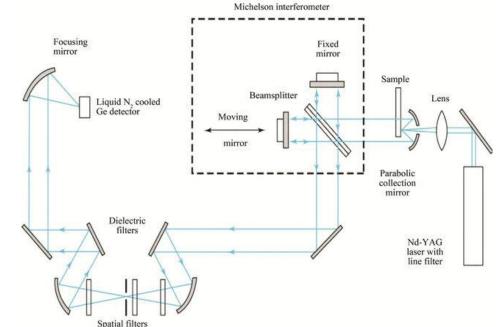
Raman visible to unaided eye!

Instrumentation

Basic experimental setup


Main components:

- Laser excitation source
- Excitation delivery optics
- Sample
- Collection optics
- Wavelength separation device
 - \circ notch filter (blocks v_{src})
 - $\circ~$ edge filters:


longpass (transmits Stokes), shortpass (transmits Anti-Stokes)

• Detector

Classical (dispersive) Raman: monochromator + photomultiplier

FT-Raman: interferometer

Advantages

- Non-destructive technique
- Wide selection of sources (from UV to NIR)
- Lower wavenumbers accessible solid state analysis
- No special sample preparation required
- Aqueous solutions possible in Raman (water is weak Raman scatterer, but strong absorber in IR)
- Wide concentration range (concentration from <<1% to 100% without sample dilution measurable)
- Compatible with common windows

Instrumentation – properties

Requirements for **classical Raman technique** to determine peak position, peak shift, bandwidth and intensity:

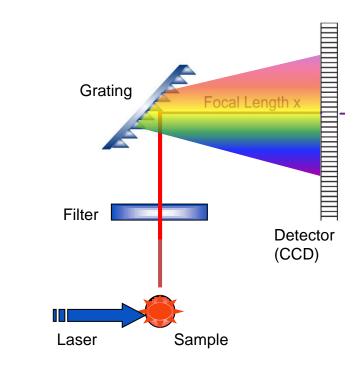
- Laser Excitation
- Reduction of stray light
- Collecting optics
- Spectral resolution and spectral coverage
- Spatial resolution and confocality
- Sensitivity: subject to detector
- Light flux: subject to dispersion

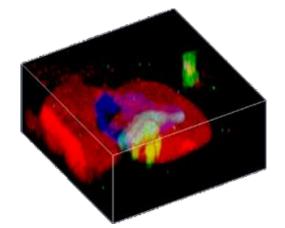
Spectral resolution is a function of

- 1. dispersion
- 2. width of entrance slit
- 3. pixel size of the CCD

Dispersion is a function of

- 1. focal length of spectrometer
- 2. groove density of the grating
- 3. excitation wavelength
- In general, long focal length & high groove density grating \rightarrow high spectral resolution.
- Raman line widths typically >3 cm⁻¹ => 1cm⁻¹ resolution sufficient


Spatial resolution


Lateral Resolution of confocal Raman microscopy (Raman sp. + confocal microscope):

- Theoretical lateral resolution: Rayleigh criterion.
- Confocal microscopes with high NA (numerical aperture) $\Delta x^{\sim} \lambda/NA$; down to 250 300 nm

Depth Resolution:

- Confocal microscope: $\Delta d^{\sim} \lambda / NA^2$; <1 μm possible

Instrumentation – source

Light source

- generally a laser to get required intensity
- doesn't have to be in IR region
- visible or UV sources used
- allows use of glass/quartz sample cells & optics
- UV/Vis type detectors (photomultiplier tubes)

Laser selection

- Avoid fluorescence
- Avoid extensive heating and photo-induced changes
- Spatial resolution/Probing volume: spot size and material penetration depth
- Raman scatter probability $\propto 1/\lambda^4 =>$ UV lasers best, but fluorescence more likely

Surelite Surelite

Wavelength [nm]

488 nm

514 nm

633 nm

457 nm

Penetration depth ~ λ => **Depth profiling** possible

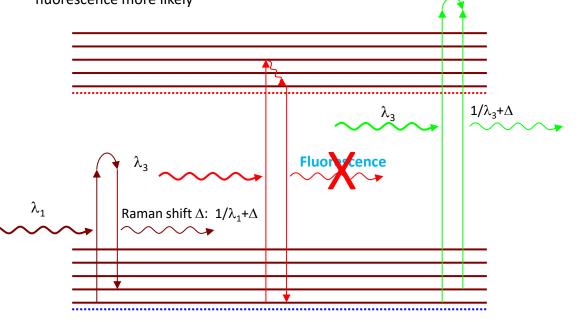
325 nm

244 nm

500

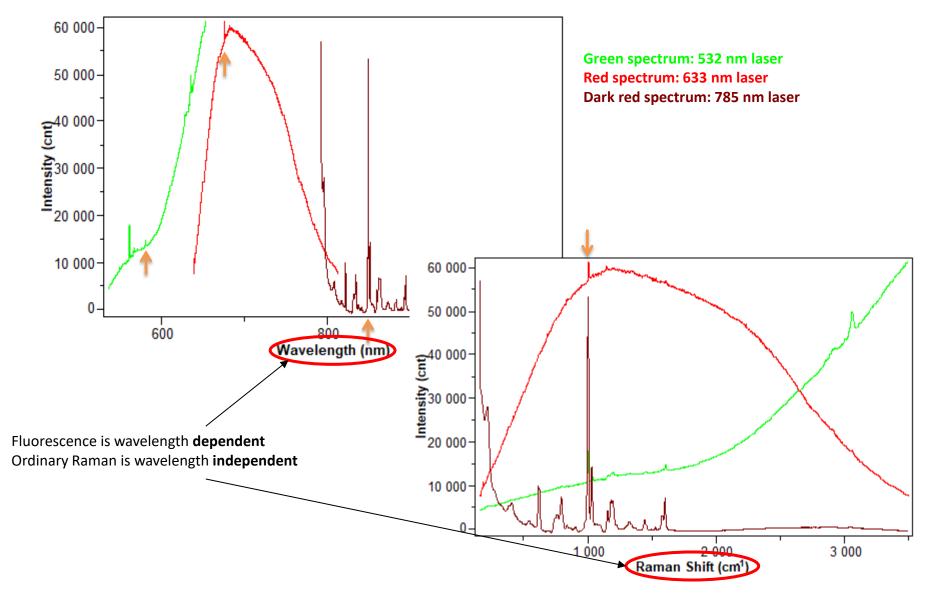
1000

1500


2000

2500

3000

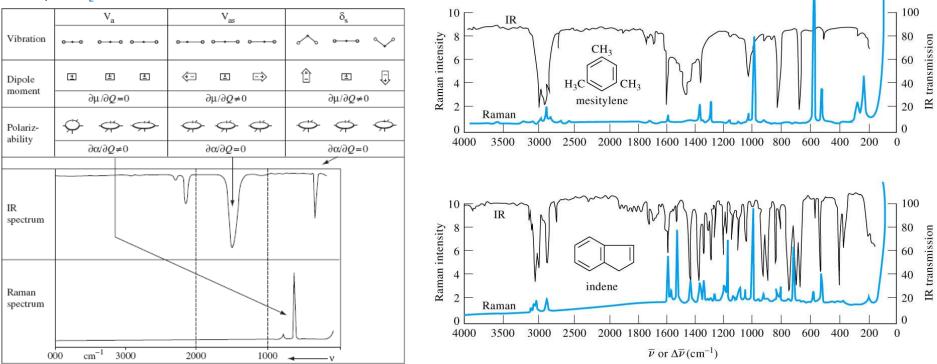

Si

Depth penetration [nm]

Laser wavelengths: $\lambda_3 < \lambda_2 < \lambda_1$

Instrumentation – source

Raman and IR comparison


Mutually exclusive principle

Symmetric molecules:

Vibrational modes are either IR or Raman active

More complex molecules:

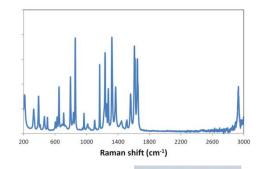
Some modes both IR and Raman active

+ Some modes can be silent!

Example: CS₂

Interpretation of spectra

Information contained in the Raman spectrum

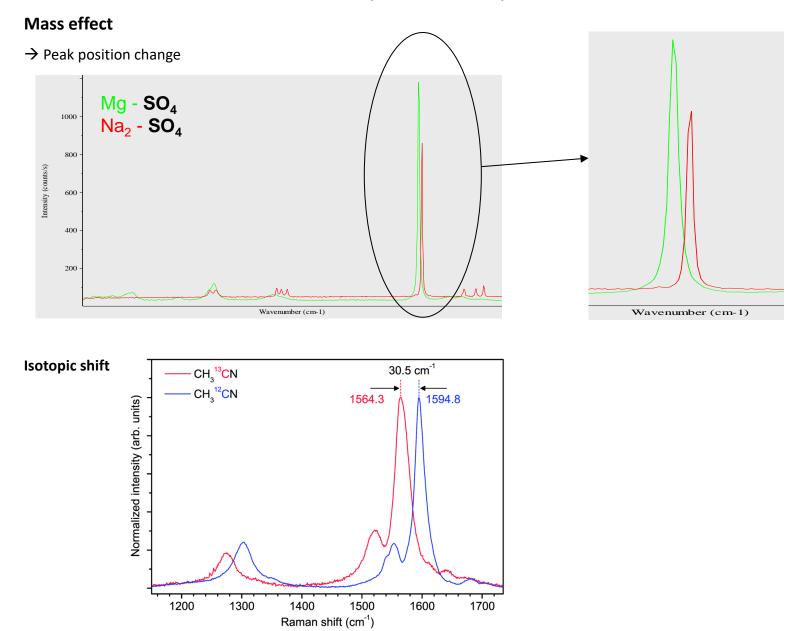

• Unique spectral fingerprint – chemical identification

• Peak intensity – information about the quantity of a specific compound

• Peak shift - can identify changes in **bond environment** and **stress and strain** states (constraints)

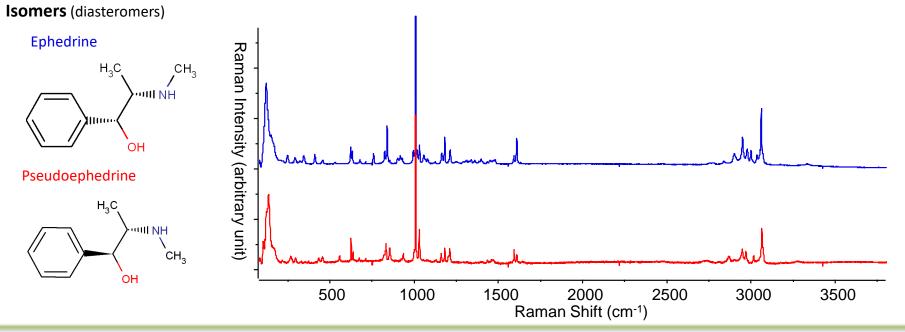
• Peak width – reveals the degree of crystallinity (structural (dis)order)

• Polarization state - information regarding molecule or crystal symmetry and orientation



Interpretation of spectra

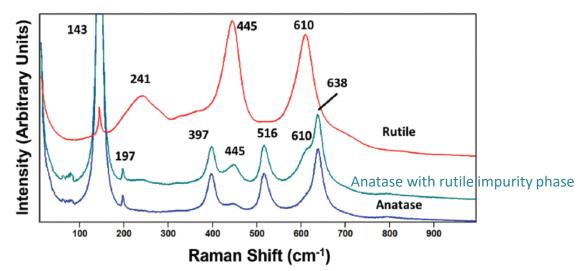
Chemical identification CH **Alcohols** stretching 20000 CCO stretching CH₂ and CH₃ Raman Intensity (arbitrary unit) 15000 deformation Η Η OH Н-С-С-О-Н stretching ethanol Н Η 10000 CO stretching CH_3 Η 5000 deformation C-O-H H methanol Η 0 500 1000 1500 2000 2500 3000 3500


Raman Shift (cm⁻¹)

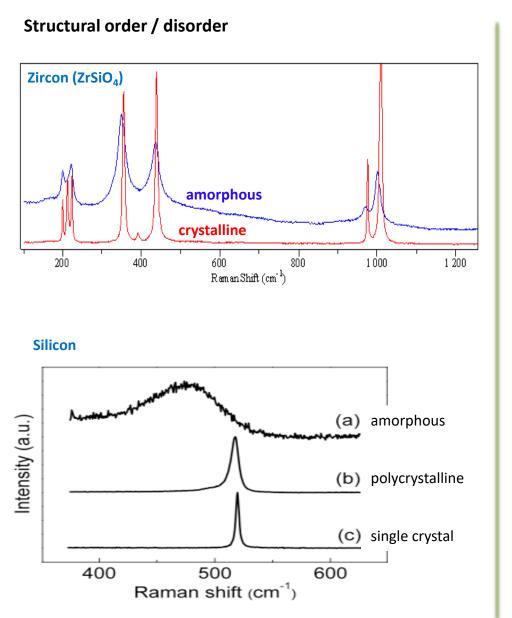
Interpretation of spectra

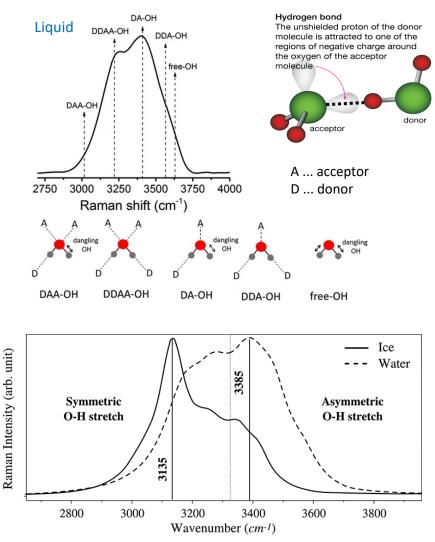
Raman spectroscopy

Interpretation of spectra


Polymorphs (different crystalline structure)

TiO₂

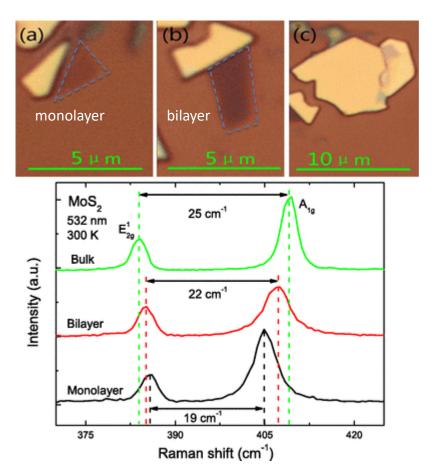

Anatase


Raman spectroscopy

Interpretation of spectra

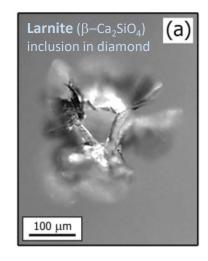
Structural order – networking

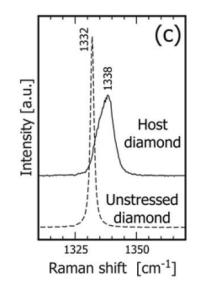
Water - different types of hydrogen bonding environments

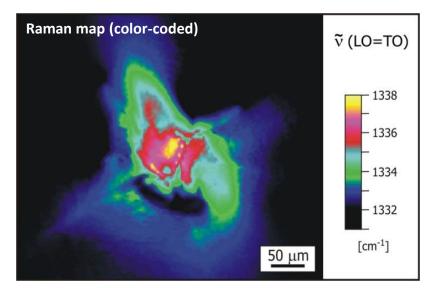


Raman spectroscopy

Interpretation of spectra

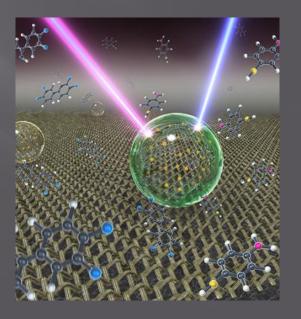

Dimension


 MoS_2 thin film on SiO_2

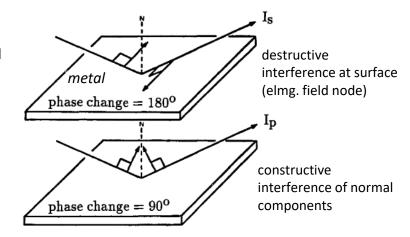


Raman spectroscopy \rightarrow contrast method in microscopy

Stress and strain

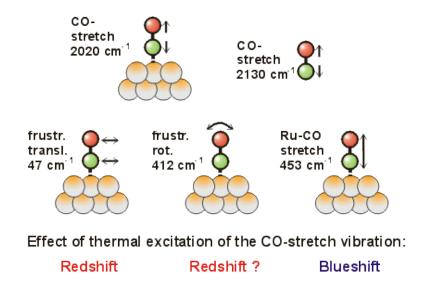


Surface vibrational spectroscopies & hybrid methods (spectromicroscopies) Povrchové vibrační spektroskopie a hybridní metody (spektromikroskopie)

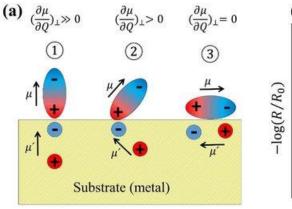

- Reflection Absorption Infrared Spectroscopy
- High Resolution Electron Energy Loss Spectroscopy
- Surface & Tip Enhanced Raman Scattering
- High Resolution Electron Energy Loss Spectroscopy
- Inelastic Electron Tunneling Spectroscopy
- Infrared Scanning Tunneling Microscopy
- Atomic Force Microscopy-based IR Spectroscopy

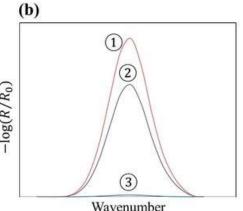
Reflection-Absorption IR Spectroscopy

Reflection-Absorption IR Spectroscopy (RAIRS, IRAS, IRRAS)

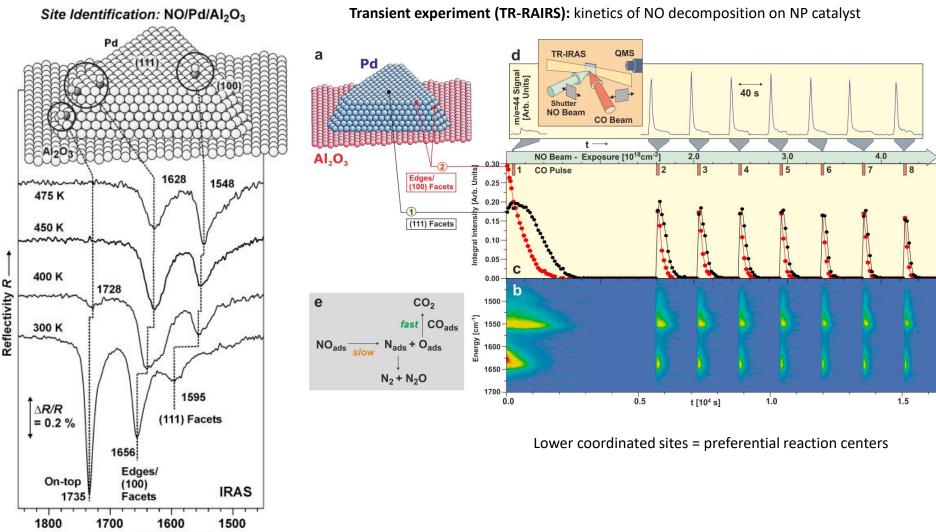

- Grazing incidence => p-polarized light reflected, s-polarized almost cancelled
- Excellent resolution different adsorption sites resolved
- Good for metals (metal cannot be measured in transmission)
- Not in-situ and UHV restriction \rightarrow operando spectroscopy

Surface vs. bulk IR spectrum


Symmetry of the system changes => shifts, new active modes, missing modes


Frustrated ro-vibrational modes

Surface dipole selection rule


- on metals
- only vibrational modes with dipole perpendicular to surface IR active

Vibrational spectroscopy

RAIRS – examples

— Energy / cm⁻¹

Vibrational spectroscopy

PM-RAIRS – examples

G. Rupprechter / Catalysis Today 126 (2007) 3-17 Polarization modulation RAIRS (IRAS) PM-IRAS surface spectra: p-s PM-IRAS gas phase spectra: (p+)s H2CO H2O 1891 COa PM-IRAS sample PM-IRAS intensity [a.u.] PM-IRAS intensity [a.u.] 187 5 and 60 min at 400 15 and 60 min at 400 K $R_p - R_s$ H2CO 1255 1840 ethanol 200 dma ? (surf+gas) (gas) 1305 + 5 mbar O2 @ 300 K 5 mbar O, @ 300 K $R_p - R$ CH₃OH ΔR CH₃OH 5 mbar CH₃OH @ 300 K ZnSe 5 mbar CH,OH @ 300 K $R_p + R_s$ R 1800 1600 1200 2000 1400 2500 (b) 3000 2000 1500 1000 wavenumber [cm-1 (a) wavenumber [cm⁻¹] (b) 100 decomposition oxidation integrated (p+s) area [a.u.] MeOH conversion [%] 5 mbar CH₃OH CH₃OH 80 15 mbar CH₃OH 5 mbar O2 400 K 400 K 60 CO2 40 H₂CO oxygen atmosphere gas CH₃OH(gas) CH₂O(gas) CO₂(gas) + H₂O(gas) chromatography 20 H₂0 15 mbar CH₃OH 15 mbar O₂ O(ads) н, H Ĥ 300 400 50 100 150 200 200 500 600 0 100 time [min] (c) time [min] (d) н CH3OH + 02 CH₂O + CO₂ + H₂O atop hollow bridge hollow hollow hollow p-s/p+s atop hollow hollow hollow

Fig. 7. Suggested mechanism of CH₃OH decomposition and oxidation on Pd catalysts.

Electron Energy Loss Spectroscopy Fundamentals

Electron Energy Loss Spectroscopy

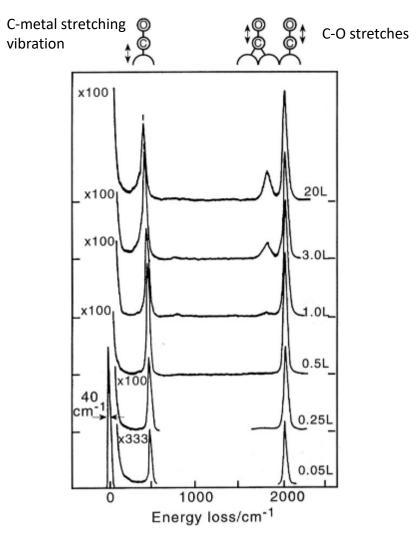
Scattering mechanisms:

Dipole scattering

 – electron scattered at long range (~100 Å) by oscillating electric field of a vibrational mode

- strong maximum near specular direction

Impact scattering


 – electron "kinematically" scattered at short range (few Å) by atomic core potentials of surface, modulated by nuclear motion (vibration)

- electron scattered over wide range of angles
- not restricted to perpendicular modes
- much lower cross section than dipole scattering

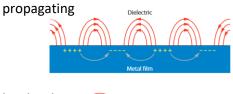
HREELS and RAIRS comparison

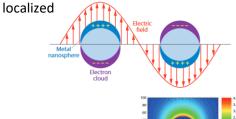
	RAIRS	HREELS
Spectral range	>100 meV (internal stretches)	>5 meV
Resolution	0.05 meV	>1 meV
Sensitivity	0.1% ML	0.1% ML
	(strong dipoles)	
Substrate	crystals	conductors
Pressure range	< 1 atm	UHV

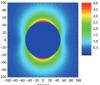
HREELS spectrum of CO on Rh(111)

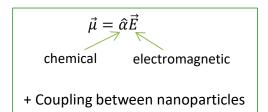
G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, Wiley Interscience, New York (1994)

Surface Enhanced Raman Spectroscopy


Surface Enhanced Raman Spectroscopy (SERS)


(Surface Enhanced Raman Scattering)

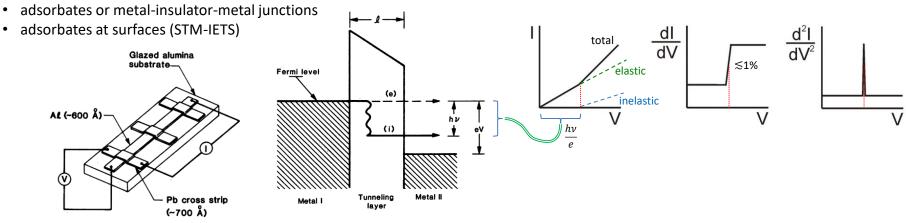

- On rough metal surfaces or nanostructures
- Strong signal enhancement ~10⁶–10¹⁰ => single molecules observable


Possible mechanisms:

- 1) electromagnetic: strong EM field generated by plasmon resonance
 - localized surface plasmons perpendicular to surface => rough surfaces, nanoparticles
 - double enhancement incident light, Raman scattered light
 - enhancement maximized at $\omega_{plasmon}$ in resonance with source (spherical particles: $\omega_{src} = \omega_{plasmon}/\sqrt{3}$) => enhancement smaller for larger Raman shifts
- 2) chemical: due to bonding between target molecule and substrate
 - formation of charge-transfer complexes ightarrow resonance Raman
 - dominant for clusters with band gap

surface plasmons

Tip Enhanced Raman Spectroscopy Fundamentals

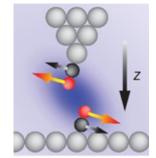

Tip-enhanced Raman spectroscopy (TERS) Local Raman spectra (Co-tetraphenyl porphyrin/Cu(100)) · combination of scanning probe microscopy and а Raman spectroscopy local Raman enhancement near the tip ٠ (a.u.) ntensity enhanced field ("hot spot") Laser Tip TERS 3.000 500 1,000 1.500 C phenyl Faman shift (cm⁻¹) Cu-CO str. C–H str. ring bend Spatial visualization of vibrational normal modes 29x29Å 320 am 2.982 cm 3.006 cm 156 cm .555 cm 30 cm experiment simulation Raman chemical sensitivity ٠ SERS absolute sensitivity SPM lateral resolution 1,413 cm-1 388 cm⁻¹ 864 cm-1 1.047 cm-1 3,199 cm-1 3,213 cm model

V.Ara Apkarian (UCI), 2019

T. Itoh et al.: Chem. Rev. 2023, 123, 4, 1552–1634

Inelastic Electron Tunneling Spectroscopy **Fundamentals**

Based on inelastic interaction of a tunneling electron with adsorbed molecule



STM-IETS


Bias sweep at fixed position => I-V characteristics (\rightarrow STS) 1st derivative: LDOS 2nd derivative: vibrations

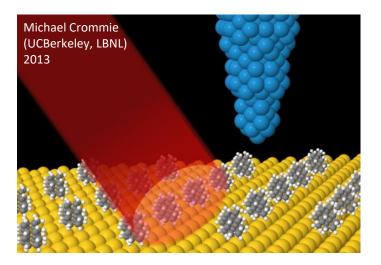
Very challenging – low temperatures, extreme stability required

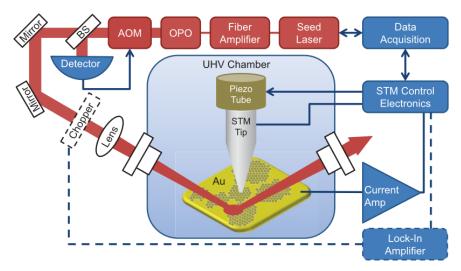
Tip-enhanced IETS - resonant enhancement when energy diff. between molec. orbitals and E_F comparable to vibrational energy => much stronger peaks

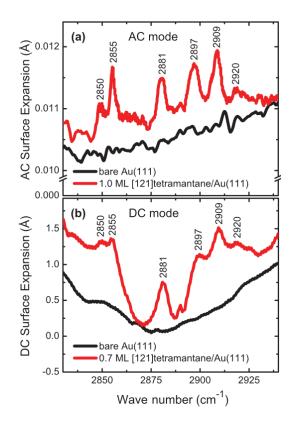

Coupled vibrations - molecule adsorbed both on tip and surface

Low

(a)


(b) 0.1nA




S. K. Khanna & J. Lambe: Science 220(4604), 1983, 1345–1351. S. You et al.: Adv. Physics X, 2(3), 2017, 907-936

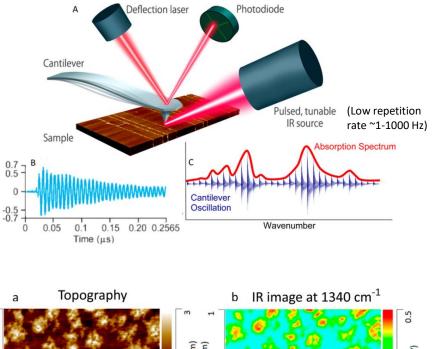
Infrared Scanning Tunneling Microscopy Fundamentals

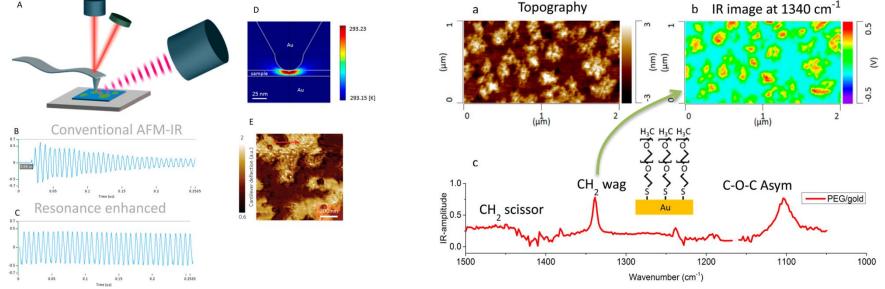
- Probing the IR response of adsorbed molecules under STM tip
- Irradiation by IR laser
- STM image of absorbing molecule changes

Vibrational spectroscopy: AFM-IR

Atomic Force Microscopy-based Infrared Spectroscopy Fundamentals

AFM-IR


– Tunable infrared laser focused to sample at proximity of probe tip – At λ = absorbing wavelength response detected by tip via thermal expansion


=> force impulse on tip => transient tip oscillation

Resonance enhanced AFM-IR – laser repetition rate tuned to tip resonance

=> continuous wave oscillation of cantilever

=> much more sensitive measurements

A. Dazzi & C.B. Prater: AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging, Chem. Rev. 2017, 117, 7, 5146–5173